1 Guangxi Key Laboratory of Nuclear Physics and Nuclear Technology, Guangxi Normal University, Guilin 541004, China; 2 School of Electronic Engineering and Automation, Guilin University of Electronic Technology, Guilin 541004, China
Abstract The magnetostriction, magnetization, and spin reorientation properties in Pr(GaxFe1-x)1.9 alloys have been investigated by high-precision x-ray diffraction (XRD) step scanning, magnetization, and Mössbauer spectra measurements. Ga substitution reduces the magnetostriction (λ||) with magnetic field H ≥ 8 kOe (1 Oe=1.33322×102 Pa), but it also increases the λ|| value when H ≤ 8 kOe at 5 K. Spin-reorientations (SR) are observed in all the alloys investigated, as determined by the step scanned XRD, Mössbauer spectra, and the abnormal temperature dependence of magnetization. An increase of the spin reorientation temperature (TSR) due to Ga substitution is found in the phase diagram, which is different from the decrease one in many R(TxFe1-x)1.9 (T=Co, Al, Mn) alloys. The present work provides a method to control the easy magnetization direction (EMD) or TSR for developing an anisotropic compensation system.
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 51901052), the Science Foundation of Guangxi Zhuang Autonomous Region, China (Grant No. 2018GXNSFAA281294), and the Training Programme for Thousands of Core Teachers in Guangxi Zhuang Autonomous Region, China.
Corresponding Authors:
Yan-Mei Tang, Xiang Li
E-mail: tangym0707@163.com;xli1984@hotmail.com
Cite this article:
Min-Yu Zeng(曾敏玉), Qing Tang(唐庆), Zhi-Wei Mei(梅志巍), Cai-Yan Lu(陆彩燕), Yan-Mei Tang(唐妍梅), Xiang Li(李翔), Yun He(何云), and Ze-Ping Guo(郭泽平) Magnetostriction and spin reorientation in ferromagnetic Laves phase Pr(GaxFe1-x)1.9 compounds 2021 Chin. Phys. B 30 067504
[1] Clark A E 1980 Ferromagnetic Materials, Vol. 1, ed. Wohlfarth E P (Amsterdam: North-Holland) p. 531 [2] Koon N, Williams C and Das B 1991 J. Magn. Magn. Mater.100 173 [3] Callen E 1969 Proceedings of the Metallic Magnetoacoustic Materials Workshop, edited by F S Garter (Boston: Office of Naval Research, Arlington, VA) [4] Clark A E, Teter J P and Wun-Fogle 1991 J. Appl. Phys.69 5771 [5] Clark A E, Teter J P and McMasters O D 1988 J. Appl. Phys.63 3910 [6] Ren W J and Zhang Z D 2013 Chin. Phys. B22 077507 [7] Shi Y G, Tang S L, Huang Y J, Nie B, Qian B, Lv L Y and Du Y W 2007 J. Alloys Compd.443 11 [8] Tang Y M, Chen L Y, Zhang L, Huang H F, Xia W B, Zhang S Y, Wei J, Tang S L and Du Y W 2014 J. Appl. Phys.115 173902 [9] Ren W J, Zhang Z D, Zhao X G, Liu W and Geng D Y 2004 Appl. Phys. Lett.84 562 [10] Ren W J, Li D, Liu W, Li J and Zhang Z D 2008 J. Appl. Phys.103 07B311 [11] Li F, Liu J J, Zhu X Y, Shen W C, Lin L L, Du J and Si P Z 2018 Solid State Commun.275 63 [12] Lin L L, Liu J J, Shen W C, Ding Q L, Wang M K, Du J and Si P Z 2018 Appl. Phys. A124 706 [13] Ren W J, Liu J J, Li D, Liu W, Zhao X G and Zhang Z D 2006 Appl. Phys. Lett.89 122506 [14] Shi Y G, Tang S L, Zhai L, Huang H B, Wang R L, Yu J Y and Du Y W 2008 Appl. Phys. Lett.92 212507 [15] Ren W J, Li D, Sui Y C, Liu W, Zhao X G, Liu J J, Li J and Zhang Z D 2006 J. Appl. Phys.99 08M701 [16] Hu C C, Shi Y G, Chen Z Y, Shi D N, Tang S L and Du Y W 2014 J. Alloys Compd.613 153 [17] Wang Y, Tang S L, Li Y L, Xie R and Du Y W 2013 Chin. Phys. B22 037503 [18] Yang S, Bao H X, Zhou C, Wang Y, Ren X B, Yoshitaka Matsushita, Yoshio Katsuya, Masahiko Tanaka, Keisuke Kobayashi, Song X P and Gao J R 2010 Phys. Rev. Lett.104 197201 [19] Shi Y G, Chen Z Y, Wang L, Hu C C, Pan Q and Shi D N 2016 AIP Adv.6 056207 [20] Wang Y, Ma T Y, Wu C, Yan M, Zhang C S, Chen X P, Sun G G, Yang S, Wang Y, Chang T Y, Zhou C, Liao X Q and Zheng X Q 2017 AIP Adv.7 075311 [21] Ren W J, Yang J L, Li B, Li D, Zhao X G and Zhang Z D 2009 Physica B404 3410 [22] M Shimotomai, H Miyake and M Doyama 1980 J. Phys. F: Met. Phys.10 707 [23] Shi Y G, Tang S L, Huang Y J, Lv L Y and Du Y W 2007 Appl. Phys. Lett.90 142515 [24] Murtaza Adil, Yang S, Zhou C and Song X P 2016 Chin. Phys. B25 096107 [25] Tang Y J, Feng Y B, Luo H L and Pan S M 1994 J. Appl. Phys.76 7145 [26] Tang S L, Wu C H, Jin X M, Wang B W, Chuang Y C, Li J Y and Zhao X G 1996 J. Alloys Compd.242 114 [27] Zhao X G, Li J Y, Liu S C, Ji S Q and Jia K C 1997 J. Alloys Compd.258 39 [28] Pan Z B, Liu J J, Si P Z and Ren W J 2016 Mater. Res. Bull.77 122 [29] Wang Y, Ren W J, Yang Y H, Li B, Li J and Zhang Z D 2013 J. Appl. Phys.113 143903 [30] Liu X Y, Liu J J, Pan Z B, Song H X, Zhang Z R, Du J and Ren W J 2015 J. Magn. Magn. Mater.391 60 [31] Li F, Liu J J, Zhang Z R, Lin L L, Shen W C, Zhu X Y, Du J and Si P Z 2017 J. Alloys Compd.725 946 [32] Hu C C, Shi Y G, Zheng T F, Fan J Y, Shi D N, Lv L Y and Tang S L 2012 J. Appl. Phys.112 063902 [33] Tang Y M, Xu H Y, Huang Y, Tang Z X and Tang S L 2017 Chin. Phys. B26 127502 [34] Tang Y M, Chen L Y, Wei J, Tang S L and Du Y W 2014 Chin. Phys. B23 077503 [35] Funayama T, Kobayashi T, Sakai I and Sahashi M 1992 Appl. Phys. Lett.61 114 [36] Guo H Q, Gong H Y, Yang H Y, Li Y F, Yang L Y, Shen B G and Li R Q 1996 Phys. Rev. B54 4107
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.