Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(1): 010201    DOI: 10.1088/1674-1056/28/1/010201
GENERAL   Next  

A nonlocal Burgers equation in atmospheric dynamical system and its exact solutions

Xi-Zhong Liu(刘希忠)1, Jun Yu(俞军)1, Zhi-Mei Lou(楼智美)1, Xian-Min Qian(钱贤民)2
1 Institute of Nonlinear Science, Shaoxing University, Shaoxing 312000, China;
2 Yuanpei College, Shaoxing University, Shaoxing 312000, China

From a two-vortex interaction model in atmospheric and oceanic systems, a nonlocal counterpart with shifted parity and delayed time reversal is derived by a simple AB reduction. To obtain some approximate analytic solutions of this nonlocal system, the multi-scale expansion method is applied to get an AB-Burgers system. Various exact solutions of the AB-Burgers equation, including elliptic periodic waves, kink waves and solitary waves, are obtained and shown graphically. To show the applications of these solutions in describing correlated events, a simple approximate solution for the two-vortex interaction model is given to show two correlated dipole blocking events at two different places. Furthermore, symmetry reduction solutions of the nonlocal AB-Burgers equation are also given by using the standard Lie symmetry method.

Keywords:  AB-BA equivalence principle      nonlocal Burgers equation      periodic waves  
Received:  11 September 2018      Revised:  13 October 2018      Published:  05 January 2019
PACS:  02.30.Jr (Partial differential equations)  
  02.30.Ik (Integrable systems)  
  05.45.Yv (Solitons)  
  47.35.Fg (Solitary waves)  

Project supported by the National Natural Science Foundation of China (Grant Nos. 11405110, 11275129, and 11472177) and the Natural Science Foundation of Zhejiang Province of China (Grant No. LY18A050001).

Corresponding Authors:  Xi-Zhong Liu     E-mail:

Cite this article: 

Xi-Zhong Liu(刘希忠), Jun Yu(俞军), Zhi-Mei Lou(楼智美), Xian-Min Qian(钱贤民) A nonlocal Burgers equation in atmospheric dynamical system and its exact solutions 2019 Chin. Phys. B 28 010201

[1] Ablowitz M J and Musslimani Z H 2013 Phys. Rev. Lett. 110 064105
[2] Liu Y K and Li B 2017 Chin. Phys. Lett. 34 010202
[3] Tang X Y and Liang Z F 2018 Nonlinear Dyn. 92 815
[4] Ablowitz M J and Musslimani Z H 2014 Phys. Rev. E 90 032912
[5] Tang X Y, Liang Z F and Hao X Z 2018 Commun. Nonlinear Sci. 60 62
[6] Ma L Y and Zhu Z N 2016 Appl. Math. Lett. 59 115
[7] Wang Z, Qin Y P and Zou L 2017 Chin. Phys. B 26 050504
[8] Ablowitz M J and Musslimani Z H 2017 Stud. Appl. Math. 139 7
[9] Lou S Y and Huang F 2017 Sci. Rep. 7 869
[10] Lou S Y 2016 arXiv:1603.03975
[11] Jia M and Lou S Y 2018 Phys. Lett. A 382 1157
[12] Lamb H 1945 Hydrodynamics (New York: Dover)
[13] Lou S Y, Jia M, Huang F and Tang X Y 2007 Internat. J. Theor. Phys. 46 2082
[14] Jia M, Gao Y, Huang F, Lou S Y, Sun J L and Tang X Y 2012 Nonl. Anal. Real Word Appl. 13 2079
[15] Butchart N, Haines K and Marshall J C 1989 J. Atmos. Sci. 46 2063
[16] Tang X Y, Gao Y, Huang F and Lou S Y 2009 Chin. Phys. B 18 4622
[17] Tang X Y, Zhao J, Huang F and Lou S Y 2009 Stud. Appl. Math. 122 295
[18] Luo D H and Li J P 2001 Adv. Atmos. Sci. 18 239
[19] Tang X Y, Huang F and Lou S Y 2006 Chin. Phys. Lett. 23 887
[20] Qu G Z, Zhang S L, Li H X, Wang G W 2018 Commun. Theor. Phys. 70 399
[21] Wang G W, Kara A H 2018 Commun. Theor. Phys. 69 5
[1] Dynamical interactions between higher-order rogue waves and various forms of n-soliton solutions (n → ∞) of the (2+1)-dimensional ANNV equation
Md Fazlul Hoque, Harun-Or-Roshid, and Fahad Sameer Alshammari. Chin. Phys. B, 2020, 29(11): 114701.
No Suggested Reading articles found!