Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(3): 030203    DOI: 10.1088/1674-1056/abc2b6
GENERAL Prev   Next  

Model predictive inverse method for recovering boundary conditions of two-dimensional ablation

Guang-Jun Wang(王广军)1,2, Ze-Hong Chen(陈泽弘)1, Guang-Xiang Zhang(章广祥)1, and Hong Chen(陈红)1,2,
1 School of Energy and Power Engineering, Chongqing University, Chongqing 400044, China; 2 Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Ministry of Education, Chongqing University, Chongqing 400044, China
Abstract  A model predictive inverse method (MPIM) is presented to estimate the time-and space-dependent heat flux on the ablated boundary and the ablation velocity of the two-dimensional ablation system. For the method, first of all, the relationship between the heat flux and the temperatures of the measurement points inside the ablation material is established by the predictive model based on an influence relationship matrix. Meanwhile, the estimation task is formulated as an inverse heat transfer problem (IHTP) with consideration of ablation, which is described by an objective function of the temperatures at the measurement point. Then, the rolling optimization is used to solve the IHTP to online estimate the unknown heat flux on the ablated boundary. Furthermore, the movement law of the ablated boundary is reconstructed according to the estimation of the boundary heat flux. The effects of the temperature measurement errors, the number of future time steps, and the arrangement of the measurement points on the estimation results are analyzed in numerical experiments. On the basis of the numerical results, the effectiveness of the presented method is clarified.
Keywords:  ablation      heat transfer      model predictive inverse method (MPIM)      boundary reconstruction  
Received:  08 August 2020      Revised:  29 September 2020      Accepted manuscript online:  20 October 2020
PACS:  02.30.Zz (Inverse problems)  
  44.10.+i (Heat conduction)  
  43.20.Ye (Measurement methods and instrumentation)  
  64.70.-p (Specific phase transitions)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 51876010 and 51676019).
Corresponding Authors:  Corresponding author. E-mail: chenh@cqu.edu.cn   

Cite this article: 

Guang-Jun Wang(王广军), Ze-Hong Chen(陈泽弘), Guang-Xiang Zhang(章广祥), and Hong Chen(陈红) Model predictive inverse method for recovering boundary conditions of two-dimensional ablation 2021 Chin. Phys. B 30 030203

1 Candane S R, Balaji C and Venkateshan S P 2007 J. Heat Transfer 129 912
2 Tan C, Zhao L J, Chen M J, Cheng J, Yin Z Y, Liu Q, Yang H and Liao W 2020 Chin. Phys. B 29 054209
3 Ferraiuolo M and Manca O 2012 Int. J. Therm. Sci. 53 56
4 Iqbal T, Abrar M, Tahir M B, Seemab M, Majid A and Rafique S 2018 Chin. Phys. B 27 087401
5 Tsai D C and Hwang W S 2012 J. Cryst. Growth 343 45
6 Yan H, Yan J and Zhao G 2019 Chin. Phys. B 28 114401
7 Niu C Y, Qi H, Huang X, Ruan L M, Wang W, Run L M and Tan H P 2015 Chin. Phys. B 24 114401
8 Liu G N and Liu D 2018 Chin. Phys. B 27 054401
9 Zhang L H, Tai B L, Wang G J, Zhang K B, Sullivan S and Shih A J 2013 Med. Eng. Phys. 35 1391
10 Zhang L H, Tai B L, Wang A C and Shih A J 2013 CIRP Ann.-Manuf. Techn. 62 367
11 Cui K and Yang G W 2005 Chin. Phys. Lett. 22 2738
12 Wang Q H, Li Z H, Lai J C and He A Z 2007 Chin. Phys. Lett. 24 1076
13 Qin X 2018 Chin. Phys. B 27 100203
14 Beck J V, Blackwell B and Charles R ST Clair J1985 Inverse Heat Conduction: Ill-Posed Problems (New York: John Wiley and Sons)
15 Ozisik M N and Orlande H R B2000 Inverse heat transfer (New York: Taylor & Francis)
16 Niu C Y, Qi H, Ren Y T and Ruan L M 2016 Chin. Phys. B 25 047801
17 Sun S C 2021 Int. J. Therm. Sci. 163 106853
18 Chen Z J and Zhang S Y 2010 Chin. Phys. Lett. 27 026502
19 He Z Z, Liang D, Mao J K and Han X S 2018 Chin. Phys. B 27 059101
20 Wang K, Wang G J, Chen H and Zhu L N 2014 Appl. Therm. Eng. 66 309
21 Qiao Y B, Qi H, Zhao F Z and Ruan L M 2016 Chin. Phys. B 25 120201
22 Wang Y and Zhao X F 2019 Chin. Phys. B 28 104301
23 Vakili S and Gadala M S 2009 Heat Transfer, Part B: Fund. 56 119
24 Sun S C, Wang G J, Chen H and Zhang D Q 2019 Int. J. Heat Mass Transfer 134 574
25 Tapaswini S, Chakraverty S and Behera D 2015 Chin. Phys. B 24 050203
26 Sun S C, Wang G J and Chen H 2020 Chin. Phys. B in press
27 de Oliveira A P and Orlande H R B 2002 Inverse Problems in Engineering Mechanics III, 2002, Nagano, Japan, p. 39
28 Molavi H, Hakkaki-Fard A, Molavi M, Rahmani R K, Ayasoufi A and Noori S 2011 Int. J. Heat Mass Transfer 54 1030
29 Mohammadiun M, Molavi H, Bahrami H R T and Mohammadiun H 2013 Heat Transfer Eng. 35 933
30 Farzan H, Loulou T and Sarvari S M H 2017 J. Mech. Sci. Technol. 31 3969
31 Cross P G and Boyd I D 2017 J. Spacecraft Rockets 54 212
32 Wang G J, Lv C, Chen H, Wan S B and Zhang D Q 2018 Int. J. Heat Mass Transfer 118 847
33 Li Y H, Wang G J and Chen H 2015 Appl. Therm. Eng. 80 396
34 Li Y H, Wang G J and Chen H 2015 Int. J. Therm. Sci. 88 148
35 Petrushevsky V and Cohen S 1999 J. Heat Transfer 121 708
36 Katte S S, Das S K and Venkateshan S P 2000 J. Thermophys. Heat Transfer 14 548
37 Hunter L W, Perini L L, Conn D W and Brenza P T 1986 J. Spacecraft Rockets 23 487
38 Blom F J 2000 Int. J. Numer. Meth. Fl. 32 647
39 Bottasso C L, Detomi D and Serra R 2005 Comput. Method. Appl. M. 194 4244
40 Camacho E F and Bordons C2007 Model Predictive Control(London: Springer-Verlag)
41 Hafid M and Lacroix M 2017 Appl. Therm. Eng. 110 265
42 Woodbury K A and Thakur S K 1996 Inverse Probl. Sci. En. 2 319
[1] Effect of bio-tissue deformation behavior due to intratumoral injection on magnetic hyperthermia
Yundong Tang(汤云东), Jian Zou(邹建), Rodolfo C.C. Flesch, and Tao Jin(金涛). Chin. Phys. B, 2023, 32(3): 034304.
[2] Heat transport properties within living biological tissues with temperature-dependent thermal properties
Ying-Ze Wang(王颖泽), Xiao-Yu Lu(陆晓宇), and Dong Liu(刘栋). Chin. Phys. B, 2023, 32(1): 014401.
[3] Quantitative evaluation of LAL productivity of colloidal nanomaterials: Which laser pulse width is more productive, ergonomic, and economic?
Alena Nastulyavichus, Nikita Smirnov, and Sergey Kudryashov. Chin. Phys. B, 2022, 31(7): 077803.
[4] Up/down-conversion luminescence of monoclinic Gd2O3:Er3+ nanoparticles prepared by laser ablation in liquid
Hua-Wei Deng(邓华威) and Di-Hu Chen(陈弟虎). Chin. Phys. B, 2022, 31(7): 078701.
[5] Accurate prediction of the critical heat flux for pool boiling on the heater substrate
Fengxun Hai(海丰勋), Wei Zhu(祝薇), Xiaoyi Yang(杨晓奕), and Yuan Deng(邓元). Chin. Phys. B, 2022, 31(6): 064401.
[6] A low-cost invasive microwave ablation antenna with a directional heating pattern
Zhang Wen(文章), Xian-Qi Lin(林先其), Chen-Nan Li(李晨楠), and Yu-Lu Fan(樊钰璐). Chin. Phys. B, 2022, 31(3): 038401.
[7] Pulsed laser ablation in liquid of sp-carbon chains: Status and recent advances
Pietro Marabotti, Sonia Peggiani, Alessandro Vidale, and Carlo Spartaco Casari. Chin. Phys. B, 2022, 31(12): 125202.
[8] Numerical simulation of anode heat transfer of nitrogen arc utilizing two-temperature chemical non-equilibrium model
Chong Niu(牛冲), Surong Sun(孙素蓉), Jianghong Sun(孙江宏), and Haixing Wang(王海兴). Chin. Phys. B, 2021, 30(9): 095206.
[9] Continuous droplet rebound on heated surfaces and its effects on heat transfer property: A lattice Boltzmann study
Qing-Yu Zhang(张庆宇), Qi-Peng Dong(董其鹏), Shan-Lin Wang(王山林), Zhi-Jun Wang(王志军), and Jian Zhou(周健). Chin. Phys. B, 2021, 30(4): 044703.
[10] Design and optimization of nano-antenna for thermal ablation of liver cancer cells
Mohammad Javad Rabienejhad, Azardokht Mazaheri, and Mahdi Davoudi-Darareh. Chin. Phys. B, 2021, 30(4): 048401.
[11] Anti-parity-time symmetric phase transition in diffusive systems
Pei-Chao Cao(曹培超) and Xue-Feng Zhu(祝雪丰). Chin. Phys. B, 2021, 30(3): 030505.
[12] Effects of heat transfer in a growing particle layer on microstructural evolution during solidification of colloidal suspensions
Jia-Xue You(游家学), Yun-Han Zhang(张运涵), Zhi-Jun Wang(王志军), Jin-Cheng Wang(王锦程), and Sheng-Zhong Liu(刘生忠). Chin. Phys. B, 2021, 30(2): 028103.
[13] Lattice Boltzmann simulation on thermal performance of composite phase change material based on Voronoi models
Meng-Yue Guo(郭孟月), Qun Han(韩群), Xiang-Dong Liu(刘向东), and Bo Zhou(周博). Chin. Phys. B, 2021, 30(10): 104401.
[14] An efficient inverse approach for reconstructing time- and space-dependent heat flux of participating medium
Shuang-Cheng Sun(孙双成), Guang-Jun Wang(王广军), and Hong Chen(陈红)$. Chin. Phys. B, 2020, 29(11): 110202.
[15] Uniformity principle of temperature difference field in heat transfer optimization
Xue-Tao Cheng(程雪涛), Xin-Gang Liang(梁新刚). Chin. Phys. B, 2019, 28(6): 064402.
No Suggested Reading articles found!