|
|
Stable quantum interference enabled by coexisting detuned and resonant STIRAPs |
Dan Liu(刘丹), Yichun Gao(高益淳), Jianqin Xu(许建琴), and Jing Qian(钱静)† |
Department of Physics, School of Physics and Electronic Science, East China Normal University, Shanghai 200062, China |
|
|
Abstract Inspired by a recent experiment [Phys. Rev. Lett. 122 253201(2019)] that an unprecedented quantum interference was observed in the way of stimulated Raman adiabatic passage (STIRAP) due to the coexisting resonant- and detuned-STIRAPs, we comprehensively study this effect. Our results uncover the scheme robustness towards any external-field fluctuations coming from laser intensity noise and imperfect resonance condition, as well as the persistence of high-contrast interference pattern even when more nearby excited levels are involved. We verify that an auxiliary dynamical phase accumulated in hold time caused by the presence of the quasi-dark state in detuned-STIRAP can sensitively manipulate the visibility and frequency of the interference pattern, representing a new hallmark to measure the hyperfine energy accurately. The robust stability of the scheme comes from the intrinsic superiority embedded in the STIRAP mechanism that preserves the coherence of population transfer, which promises a remarkable performance of quantum interference in a practical implementation.
|
Received: 25 October 2020
Revised: 30 December 2020
Accepted manuscript online: 28 January 2021
|
PACS:
|
37.25.+k
|
(Atom interferometry techniques)
|
|
33.40.+f
|
(Multiple resonances (including double and higher-order resonance processes, such as double nuclear magnetic resonance, electron double resonance, and microwave optical double resonance))
|
|
42.25.Hz
|
(Interference)
|
|
03.65.Ta
|
(Foundations of quantum mechanics; measurement theory)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11474094 and 11104076) and the Science and Technology Commission of Shanghai Municipality, China (Grant No. 18ZR1412800). |
Corresponding Authors:
Jing Qian
E-mail: jqian1982@gmail.com
|
Cite this article:
Dan Liu(刘丹), Yichun Gao(高益淳), Jianqin Xu(许建琴), and Jing Qian(钱静) Stable quantum interference enabled by coexisting detuned and resonant STIRAPs 2021 Chin. Phys. B 30 053701
|
[1] Hohenleutner M, Langer F, Schubert O, Knorr M, Huttner U, Koch S W, Kira M and Huber R 2015 Nature 523 572 [2] Bäuerle C, Christian Glattli D, Meunier T, Portier F, Roche P, Roulleau P, Takada S and Waintal X 2018 Rep. Prog. Phys. 81 98a [3] Tang J, Deng Y and Lee C 2019 Phys. Rev. Appl. 12 044065 [4] Tan X, Zhang D W, Zhang Z, Yu Y, Han S and Zhu S L 2014 Phys. Rev. Lett. 112 027001 [5] Lecocq F, Ranzani L, Peterson G A, Cicak K, Simmonds R W, Teufel J D and Aumentado J 2017 Phys. Rev. Appl. 7 024028 [6] Bagani K, Sarkar J, Uri A, Rappaport M L, Huber M E, Zeldov E and Myasoedov Y 2019 Phys. Rev. Appl. 12 044062 [7] Bernien H, Childress L, Robledo L, Markham M, Twitchen D and Hanson R 2012 Phys. Rev. Lett. 108 043604 [8] Rao D D B, Yang S and Wrachtrup J 2017 Phys. Rev. A 95 022310 [9] Miao K C, Bourassa A, Anderson C P, Whiteley S J, Crook A L, Bayliss S L, Wolfowicz G, Thiering G, Udvarhelyi P, Ivady V, Abe H, Ohshima T, Gali A and Awschalom D D 2019 Sci. Adv. 5 eaay0527 [10] Müller H, Peters A and Chu S 2010 Nature 463 926 [11] Brown R C, Wu S, Porto J V, Sansonetti C J, Simien C E, Brewer S M, Tan J N and Gillaspy J D 2013 Phys. Rev. A 87 032504 [12] O’Malley P J J, Kelly J, Barends R, Campbell B, Chen Y, Chen Z, Chiaro B, Dunsworth A, Fowler A G, Hoi I C, Jeffrey E, Megrant A, Mutus J, Neill C, Quintana C, Roushan P, Sank D, Vainsencher A, Wenner J, White T C, Korotkov A N, Cleland A N and Martinis J M 2015 Phys. Rev. Appl. 3 044009 [13] Ott J R, Mortensen N A and Lodahl P 2010 Phys. Rev. Lett. 105 090501 [14] Islam R, Ma R, Preiss P M, Tai M E, Lukin A, Rispoli M and Greiner M 2015 Nature 528 77 [15] Craddock A N, Hannegan J, Ornelas-Huerta D P, Siverns J D, Hachtel A J, Goldschmidt E A, Porto J V, Quraishi Q and Rolston S L 2019 Phys. Rev. Lett. 123 213601 [16] Degen C L, Reinhard F and Cappellaro P 2017 Rev. Mod. Phys. 89 035002 [17] Comparat D 2020 Phys. Rev. A 101 023606 [18] Braginsky V B and Khalili F Y 1996 Rev. Mod. Phys. 68 1 [19] Tokpanov Y S, Fakonas J S, Vest B and Atwater H A 2019 Phys. Rev. Appl. 12 044037 [20] McAlpine K E, Gochnauer D and Gupta S 2020 Phys. Rev. A 101 023614 [21] Liu L, Zhang D C, Yang H, Liu Y X, Nan J, Rui J, Zhao B and Pan J W 2019 Phys. Rev. Lett. 122 253201 [22] Weitz M, Young B C and Chu S 1994 Phys. Rev. Lett. 73 2563 [23] Vitanov N V, Rangelov A A, Shore B W and Bergmann K 2017 Rev. Mod. Phys. 89 015006 [24] Mark M J, Danzl J G, Haller E, Gustavsson M, Bouloufa N, Dulieu O, Salami H, Bergeman T, Ritsch H, Hart R and Nägerl H C 2009 Appl. Phys. B 95 219 [25] Vitanov N V and Shore B W 2006 Phys. Rev. A 73 053402 [26] Deng L and Nakajima T 2014 Phys. Rev. A 89 023406 [27] Bergmann K, Theuer H and Shore B W 1998 Rev. Mod. Phys. 70 1003 [28] Kotru K, Brown J M, Butts D L, Kinast J M and Stoner R E 2014 Phys. Rev. A 90 053611 [29] Molony P K, Gregory P D, Ji Z, Lu B, Koppinger M P, Le Sueur C R, Blackley C L, Hutson J M and Cornish S L 2014 Phys. Rev. Lett. 113 255301 [30] Auzinsh M, Berzins A, Ferber R, Gahbauer F, Kalvans L, Mozers A and Spiss A 2015 Phys. Rev. A 91 053418 [31] Du Y X, Liang Z T, Huang W, Yan H and Zhu S L 2014 Phys. Rev. A 90 023821 [32] Martin J, Shore B W and Bergmann K 1995 Phys. Rev. A 52 583 [33] Ortiz S, Song Y, Wu J, Ivannikov V and Byrnes T 2018 Phys. Rev. A 98 043616 [34] Shore B W, Martin J, Fewell M P and Bergmann K 1995 Phys. Rev. A 52 566 [35] Manzano D 2020 AIP Adv. 10 106 [36] Møller D, Madsen L B and Mølmer K 2007 Phys. Rev. A 75 062302 [37] Vepsäläinen A, Danilin S and Paraoanu G S 2018 Quantum Science and Technology 3 024006 [38] Cetina M, Jag M, Lous R S, Fritsche I, Walraven J T, Grimm R, Levinsen J, Parish M M, Schmidt R, Knap M and Demler E 2016 Science 354 96 [39] Olson J, Fox R W, Fortier T M, Sheerin T F, Brown R C, Leopardi H, Stoner R E, Oates C W and Ludlow A D 2019 Phys. Rev. Lett. 123 073202 [40] Sasaki Y, Miyazaki A, Ishida A, Namba T, Asai S, Kobayashi T, Saito H, Tanaka K and Yamamoto A 2011 Phys. Lett. B 697 121 [41] Lee J Y and Jiang G A 2013 Opt. Express 21 [42] Smerzi A, Fantoni S, Giovanazzi S and Shenoy S R 1997 Phys. Rev. Lett. 79 4950 [43] Avinadav C, Yankelev D, Shuker M, Firstenberg O and Davidson N 2020 Phys. Rev. A 102 013326 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|