GEOPHYSICS, ASTRONOMY, AND ASTROPHYSICS |
Prev
|
|
|
Relationship measurement between ac-Stark shift of 40Ca+ clock transition and laser polarization direction |
Hong-Fang Song(宋红芳)1,2,3,4, Shao-Long Chen(陈邵龙)1,2,3,4, Meng-Yan Zeng(曾孟彦)1,2,3,4, Yao Huang(黄垚)1,2,3, Hu Shao(邵虎)1,2,3,4, Yong-Bo Tang(唐永波)5, Hua Guan(管桦)1,2,3, Ke-Lin Gao(高克林)1,2,3 |
1 State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China;
2 Key Laboratory of Atomic Frequency Standards, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China;
3 Center for Cold Atom Physics, Chinese Academy of Sciences, Wuhan 430071, China;
4 University of Chinese Academy of Sciences, Beijing 100049, China;
5 College of Physics and Materials Science, Henan Normal University, Xinxiang 453007, China |
|
|
Abstract Ac-Stark shift of atom levels is caused by an ac-electromagnetic field. As an electromagnetic wave, laser light does induce ac-Stark shift. It is proved experimentally that if the light is linearly polarized, the dynamic polarizability changes with polarization direction. The polarization direction of the linearly-polarized laser is tuned by 720°, and the ac-Stark shifts of the 4S1/2, m= 1/2→3D5/2, m= 1/2 clock transitions in 40Ca+ are measured in steps of 10°. The frequency shifts change with laser polarization in a periodical manner and have values opposite to each other.
|
Received: 04 April 2017
Revised: 23 May 2017
Accepted manuscript online:
|
PACS:
|
95.55.Sh
|
(Auxiliary and recording instruments; clocks and frequency standards)
|
|
76.70.Fz
|
(Double nuclear magnetic resonance (DNMR), dynamical nuclear polarization)
|
|
29.27.Hj
|
(Polarized beams)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 91336211, 11634013, 11622434, 11474318, and 11504094) and the Chinese Academy of Sciences (Grant No. XDB21030000). |
Corresponding Authors:
Lin Gao
E-mail: klgao@wipm.ac.cn
|
Cite this article:
Hong-Fang Song(宋红芳), Shao-Long Chen(陈邵龙), Meng-Yan Zeng(曾孟彦), Yao Huang(黄垚), Hu Shao(邵虎), Yong-Bo Tang(唐永波), Hua Guan(管桦), Ke-Lin Gao(高克林) Relationship measurement between ac-Stark shift of 40Ca+ clock transition and laser polarization direction 2017 Chin. Phys. B 26 099501
|
[1] |
Singh S, Sahoo B K and Arora B 2016 Phys. Rev. A 93 063422
|
[2] |
Adhikari C M, Kawasaki A and Jentschura U D 2016 Phys. Rev. A 94 032510
|
[3] |
Goldschmidt E A, Norris D G, Koller S B, Wyllie R, Brown R C, Porto J V, Safronova U I and Safronova M S 2015 Phys. Rev. A 91 032518
|
[4] |
Sahoo B K and Arora B 2013 Phys. Rev. A 87 023402
|
[5] |
Safronova M S, Safronova U I and Clark C W 2012 Phys. Rev. A 86 042505
|
[6] |
Arora B, Safronova M S and Clark C W 2007 Phys. Rev. A 76 052509
|
[7] |
Kaur J, Singh S, Arora B and Sahoo B K 2015 Phys. Rev. A 92 031402
|
[8] |
Tang Y B, Qiao H X, Shi T Y and Mitroy J 2013 Phys. Rev. A 87 042517
|
[9] |
Huang Y, Guan H, Liu P, Bian W, Ma L, Liang K, Li T and Gao K 2016 Phys. Rev. Lett. 116 013001
|
[10] |
Rosenband T, Hume D B, Schmidt P O, Chou C W, Brusch A, Lorini L, Oskay W H, Drullinger R E, Fortier T M, Stalnaker J E, Diddams S A, Swann W C, Newbury N R, Itano W M, Wineland D J and Bergquist J C 2008 Science 319 1808
|
[11] |
Chou C W, Hume D B, Koelemeij J C J, Wineland D J and Rosenband T 2010 Phys. Rev. Lett. 104 070802
|
[12] |
Bloom B J, Nicholson T L, Williams J R, Campbell S L, Bishof M, Zhang X, Zhang W, Bromley S L and Ye J 2014 Nature 506 71
|
[13] |
Nicholson T L, Campbell S L, Hutson R B, Marti G E, Bloom B J, McNally R L, Zhang W, Barrett M D, Safronova M S, Strouse G F, Tew W L and Ye J 2015 Nat. Commun. 6 6896
|
[14] |
Leggett A J 2001 Rev. Mod. Phys. 73 307
|
[15] |
Leggett A J 2003 Rev. Mod. Phys. 75 1083
|
[16] |
Weiner J, Bagnato V S, Zilio S and Julienne P S 1999 Rev. Mod. Phys. 71 1
|
[17] |
Jones K M, Tiesinga E, Lett P D and Julienne P S 2006 Rev. Mod. Phys. 78 483
|
[18] |
Liu P L, Huang Y, Bian W, Shao H, Guan H, Tang Y B, Li C B, Mitroy J and Gao K L 2015 Phys. Rev. Lett. 114 223001
|
[19] |
Liu P L, Huang Y, Bian W, Shao H, Qian Y, Guan H, Tang L Y and Gao K L 2015 Chin. Phys. B 24 039501
|
[20] |
Arora B and Sahoo B K 2012 Phys. Rev. A 86 033416
|
[21] |
Lepers M, Wyart J F and Dulieu O 2014 Phys. Rev. A 89 022505
|
[22] |
Huang Y, Cao J, Liu P, Liang K, Ou B, Guan H, Huang X, Li T and Gao K 2012 Phys. Rev. A 85 030503
|
[23] |
Huang Y, Liu Q, Cao J, Ou B, Liu P, Guan H, Huang X and Gao K 2011 Phys. Rev. A 84 053841
|
[24] |
Qu W C, Huang Y, Guan H, Huang X R and Gao K L 2011 Chin. J. Lasers 38 0802008
|
[25] |
Bernard J E, Madej A A, Marmet L, Whitford B G, Siemsen K J and Cundy S 1999 Phys. Rev. Lett. 82 3228
|
[26] |
Barwood G, Gao K, Gill P, Huang G and Klein H A 2001 IEEE Trans. Instrum. Meas. 50 543
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|