Please wait a minute...
Chin. Phys. B, 2011, Vol. 20(11): 114216    DOI: 10.1088/1674-1056/20/11/114216
CLASSICAL AREAS OF PHENOMENOLOGY Prev   Next  

Programmable agile beam steering based on a liquid crystal prism

Xu Lin(徐林), Huang Zi-Qiang(黄子强), and Yang Ruo-Fu(杨若夫)
School of Optoelectronic Information, University of Electronic Science and Technology of China, Chengdu 610054, China
Abstract  To meet the application need for agile precision beam steering, a novel liquid crystal prism device with a simple structure, convenient control, low cost and applicable performance is presented, and analysed theoretically and experimentally. The relationships between the optical path and the thickness of the liquid crystal cell under different voltages are investigated quantitatively by using a theoretical model. Analysis results show that the optical path profile of the liquid crystal prism has a quasi-linear slope and the standard deviation of the linear slope is less than 16 nm. The slope ratio can be changed by a voltage, which achieves the programmable beam steering and control. Practical liquid crystal prism devices are fabricated. Their deflection angles and wavefront profiles with different voltages are experimentally tested. The results are in good agreement with the simulated results. The results imply that the agile beam steering in a scope of 100 μrad with a micro-rad resolution is substantiated in the device. The two-dimensional beam steering is also achieved by cascading two liquid crystal prism devices.
Keywords:  liquid crystal      polarization devices      beam steering      optical scanner  
Received:  02 April 2011      Revised:  23 May 2011      Accepted manuscript online: 
PACS:  42.70.Df (Liquid crystals)  
Fund: Project supported by the National High Technology Research and Development Program of China (Grant No. 2009AA8042017) and the Postdoctoral Science Foundation of University of Electronic Science and Technology of China.

Cite this article: 

Xu Lin(徐林), Huang Zi-Qiang(黄子强), and Yang Ruo-Fu(杨若夫) Programmable agile beam steering based on a liquid crystal prism 2011 Chin. Phys. B 20 114216

[1] Paul F M, Philip J B, Michael J E, Jason H, Steve S, Xie H K and Edward A W 2009 Proc. IEEE 97 1078
[2] Liu X, Zhang J, Wu L Y and Gan Y 2011 Chin. Phys. B 20 024211
[3] Liu C, Mu Q Q, Hu L F, Cao Z L and Xuan L 2010 Chin. Phys. B 19 064212
[4] Zhang J, Fang Y, Wu L Y and Xu L 2010 Chin. J. Las. 37 325 (in Chinese)
[5] Cai D M, Ling N and Jiang W H 2008 Acta Phys. Sin. 57 897 (in Chinese)
[6] Zheng J H, Zhong Y W, Wen K, Luo X S and Zhuang S L 2010 Acta Phys. Sin. 59 1831 (in Chinese)
[7] Yu Y J, Wang T and Zheng H D 2009 Acta Phys. Sin. 58 3154 (in Chinese)
[8] Gordon D L, John V M and Alan P 1994 Opt. Lett. 19 1170
[9] Andrii B G, Sergij V S and Oleg D L 2005 Proceeding of SPIE-Emerging Liquid Crystal Technologies, January 25-27, 2005 San Jose, United States, p. 146
[10] Nabeel A R and Sajjad A K 2003 Opt. Lett. 28 561
[11] Sajjad A K and Nabeel A R 2004 Opt. Express 12 868
[12] Jae H P and Iam C K 2005 Appl. Phys. Lett. 87 091110
[13] de Gennes P G and Prost J 2008 The Physics of Liquid Crystals (2nd edn.) (Beijing: Science Press) p. 8
[14] Xu L, Zhang J and Wu L Y 2007 Infra. Las. Eng. 36 932 (in Chinese)
[15] Friedman L J, Hobbs D S, Lieberman S and Corkum D L 1996 Appl. Opt. 35 6236
[1] Solid-to-molecular-orientational-hexatic melting induced by local environment determined defect proliferations
Zhanglin Hou(侯章林), Jieli Wang(王杰利), Ying Zeng(曾颖), Zhiyuan Zhao(赵志远), Xing Huang(黄兴), Kun Zhao(赵坤), and Fangfu Ye(叶方富). Chin. Phys. B, 2022, 31(12): 126401.
[2] Influences of nanoparticles and chain length on thermodynamic and electrical behavior of fluorine liquid crystals
Ines Ben Amor, Lotfi Saadaoui, Abdulaziz N. Alharbi, Talal M. Althagafi, and Taoufik Soltani. Chin. Phys. B, 2022, 31(10): 104202.
[3] A minimal model for the auxetic response of liquid crystal elastomers
Bingyu Yu(於冰宇), Yuanchenxi Gao(高袁晨曦), Bin Zheng(郑斌), Fanlong Meng(孟凡龙), Yu Fang(方羽), Fangfu Ye(叶方富), and Zhongcan Ouyang(欧阳钟灿). Chin. Phys. B, 2022, 31(10): 104601.
[4] Stability of liquid crystal systems doped with γ-Fe2O3 nanoparticles
Xu Zhang(张旭), Ningning Liu(刘宁宁), Zongyuan Tang(唐宗元), Yingning Miao(缪应宁), Xiangshen Meng(孟祥申), Zhenghong He(何正红), Jian Li(李建), Minglei Cai(蔡明雷), Tongzhou Zhao(赵桐州), Changyong Yang(杨长勇), Hongyu Xing(邢红玉), and Wenjiang Ye(叶文江). Chin. Phys. B, 2021, 30(9): 096101.
[5] Design and optimization of nano-antenna for thermal ablation of liver cancer cells
Mohammad Javad Rabienejhad, Azardokht Mazaheri, and Mahdi Davoudi-Darareh. Chin. Phys. B, 2021, 30(4): 048401.
[6] Beam steering characteristics in high-power quantum-cascade lasers emitting at 4.6 μ m
Yong-Qiang Sun(孙永强), Jin-Chuan Zhang(张锦川), Feng-Min Cheng(程凤敏), Chao Ning(宁超), Ning Zhuo(卓宁), Shen-Qiang Zhai(翟慎强), Feng-Qi Liu(刘峰奇), Jun-Qi Liu(刘俊岐), Shu-Man Liu(刘舒曼), and Zhan-Guo Wang(王占国). Chin. Phys. B, 2021, 30(3): 034211.
[7] Irradiation study of liquid crystal variable retarder for Full-disk Magneto-Graph payload onboard ASO-S mission
Jun-Feng Hou(侯俊峰), Hai-Feng Wang(王海峰), Gang Wang(王刚), Yong-Quan Luo(骆永全), Hong-Wei Li(李宏伟), Zhen-Long Zhang(张振龙), Dong-Guang Wang(王东光), Yuan-Yong Deng(邓元勇). Chin. Phys. B, 2020, 29(7): 074208.
[8] Creation of topological vortices using Pancharatnam-Berry phase liquid crystal holographic plates
Xuyue Guo(郭旭岳), Jinzhan Zhong(钟进展), Peng Li(李鹏), Bingyan Wei(魏冰妍), Sheng Liu(刘圣), Jianlin Zhao(赵建林). Chin. Phys. B, 2020, 29(4): 040305.
[9] Interference effect on the liquid-crystal-based Stokes polarimeter
Jun-Feng Hou(侯俊峰), Dong-Guang Wang(王东光), Yuan-Yong Deng(邓元勇), Zhi-Yong Zhang(张志勇), and Ying-Zi Sun(孙英姿). Chin. Phys. B, 2020, 29(12): 124211.
[10] Design of an augmented reality display based on polarization grating
Renjie Xia(夏人杰), Changshun Wang(王长顺), Yujia Pan(潘雨佳), Tianyu Chen(陈天宇), Ziyao Lyu(吕子瑶), Lili Sun(孙丽丽). Chin. Phys. B, 2019, 28(7): 074201.
[11] Polarized red, green, and blue light emitting diodes fabricated with identical device configuration using rubbed PEDOT:PSS as alignment layer
Haoran Zhang(张皓然), Qi Zhang(张琪), Qian Zhang(张茜), Huizhi Sun(孙汇智), Gang Hai(海港), Jing Tong(仝静), Haowen Xu(徐浩文), Ruidong Xia(夏瑞东). Chin. Phys. B, 2019, 28(7): 078108.
[12] Electro-optical properties and (E, T) phase diagram of fluorinated chiral smectic liquid crystals
R Zgueb, H Dhaouadi, T Othman. Chin. Phys. B, 2018, 27(10): 107701.
[13] Electro-optical properties of high birefringence liquid crystal compounds with isothiocyanate and naphthyl group
Zeng-Hui Peng(彭增辉), Qi-Dong Wang(王启东), Shao-Xin Wang(王少鑫), Li-Shuang Yao(姚丽双), Yong-Gang Liu(刘永刚), Li-Fa Hu(胡立发), Zhao-Liang Cao(曹召良), Quan-Quan Mu(穆全全), Cheng-Liang Yang(杨程亮), Li Xuan(宣丽). Chin. Phys. B, 2017, 26(9): 094210.
[14] Experimental design to measure the anchoring energy on substrate surface by using the alternating-current bridge
Hui-Ming Hao(郝慧明), Yao-Yao Liu(刘瑶瑶), Ping Zhang(张平), Ming-Lei Cai(蔡明雷), Xiao-Yan Wang(王晓燕), Ji-Liang Zhu(朱吉亮), Wen-Jiang Ye(叶文江). Chin. Phys. B, 2017, 26(8): 086102.
[15] Behavior of lysozyme adsorbed onto biological liquid crystal lipid monolayer at the air/water interface
Xiaolong Lu(逯晓龙), Ruixin Shi(史瑞新), Changchun Hao(郝长春), Huan Chen(陈欢), Lei Zhang(张蕾), Junhua Li(李俊花), Guoqing Xu(徐国庆), Runguang Sun(孙润广). Chin. Phys. B, 2016, 25(9): 090506.
No Suggested Reading articles found!