Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(5): 054601    DOI: 10.1088/1674-1056/abd696
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Experimental analysis of interface contact behavior using a novel image processing method

Jingyu Han(韩靖宇), Zhijun Luo(罗治军), Yuling Zhang(张玉玲), and Shaoze Yan(阎绍泽)
State Key Laboratory of Tribology, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China
Abstract  The spatial and temporal evolution of real contact area of contact interface with loads is a challenge. It is generally believed that there is a positive linear correlation between real contact area and normal load. However, with the development of measuring instruments and methods, some scholars have found that the growth rate of real contact area will slow down with the increase of normal load under certain conditions, such as large-scale interface contact with small roughness surface, which is called the nonlinear phenomenon of real contact area. At present, there is no unified conclusion on the explanation of this phenomenon. We set up an experimental apparatus based on the total reflection principle to verify this phenomenon and analyze its mechanism. An image processing method is proposed, which can be used to quantitative analysis micro contact behaviors on macro contact phenomenon. The weighted superposition method is used to identify micro contact spots, to calculate the real contact area, and the color superimposed image is used to identify micro contact behaviors. Based on this method, the spatiotemporal evolution mechanism of real contact area nonlinear phenomena is quantitatively analyzed. Furthermore, the influence of nonlinear phenomenon of real contact area on the whole loading and unloading process is analyzed experimentally. It is found that the effects of fluid between contact interface, normal load amplitude and initial contact state on contact behavior cannot be ignored in large-scale interface contact with small roughness surface.
Keywords:  real contact area      total reflection method      micro-contact spots      interface contact      experimental analysis  
Received:  26 October 2020      Revised:  15 December 2020      Accepted manuscript online:  24 December 2020
PACS:  46.55.+d (Tribology and mechanical contacts)  
  42.30.Va (Image forming and processing)  
  78.20.Ci (Optical constants (including refractive index, complex dielectric constant, absorption, reflection and transmission coefficients, emissivity))  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11872033) and the Beijing Natural Science Foundation, China (Grant No. 3172017).
Corresponding Authors:  Shaoze Yan     E-mail:  yansz@mail.tsinghua.edu.cn

Cite this article: 

Jingyu Han(韩靖宇), Zhijun Luo(罗治军), Yuling Zhang(张玉玲), and Shaoze Yan(阎绍泽) Experimental analysis of interface contact behavior using a novel image processing method 2021 Chin. Phys. B 30 054601

[1] Bharat B 1985 ASLE Trans. 28 181
[2] Bowden F P and Leben L 1939 Proc. Roy. Soc. A 169 371
[3] Tian P, Tao D, Yin W, Zhang X, Meng Y and Tian Y 2016 Sci. Rep. 6 33730
[4] Li G L, Zhang Z Q, Wang H D, Xu B S, Piao Z Y amd Zhu L N 2013 Tribol. Int. 61 129
[5] Rubinstein S M, Cohen G and Fineberg J 2009 J. Phys. D: Appl. Phys. 795 214016
[6] Rubinstein S M, Shay M, Cohen G and Fineberg J 2006 Int. J. Fracture 140 201
[7] Pantcho S and Richard R C 2017 Materials 10 550
[8] Weber B, Suhina T, Junge T, Pastewka L, Brouwer A M and Bonn D 2018 Nat. Commun. 9 888
[9] Maegawa S, Suzuki A and Nakano K 2010 Tribol Lett. 38 313
[10] Krick B A, Vail J R, Persson B N J and Sawyer W G 2012 Tribol. Lett. 45 185
[11] Parker R C and Hatch D 1950 Proc. Phys. Soc. Sec. B 63 185
[12] Greenwood J A and Williamson J B 1966 Proc. R. Soc. Lond. A 295 300
[13] Persson B N J 2001 Phys. Rev. Lett. 87 116101
[14] Hao X H, Pan D, Zhang Z Y, Wang S Q, Gao Y J and Gu D P 2020 Chin. Phys. B 29 46802
[15] Guo Y, Liu A, Wang J and Liu X 2019 Chin. Phys. B 28 94212
[16] Cao Q L, Huang D H, Yang J S and Wang F H 2020 Chin. Phys. Lett. 37 76201
[17] Heslot F, Baumberger T, Perrin B, Caroli B and Caroli C 1994 Phys. Rev. E 49 4973
[18] Polonsky I A and Keer L M 1999 Wear 231 206
[19] Overney R M, Takano H, Fujihira M, Paulus W and Ringsdorf H 1994 Phys. Rev. Lett. 72 3546
[20] Ciavarella M, Delfine V and Demelio G 2006 J. Mech. Phys. Solids 54 2569
[21] Song B J, Yan S Z and Xiang W W K 2015 Chin. Phys. B 24 014601
[22] Luo Z J, Song B J, Han J Y and Yan S Z 2019 Chin. Phys. B 28 054601
[23] Ovcharenko A, Halperin G, Etsion I and Varenberg M 2006 Tribol Lett. 23 55
[24] Matsuda K, Hashimoto D and Nakamura K 2016 Tribol. Int. 93 523
[25] Matsuda K, Mori S, Hatanaka A, Sunahara T and Nakamura K 2018 Tribol. Int. 124 184
[26] Kucharski S and Starzynski G 2014 Wear 311 167
[27] Yin H M, Zhou H W and Huang Y N 2019 Chin. Phys. Lett. 36 070501
[28] Dillavou S and Rubinstein S M 2018 Phys. Rev. Lett. 120 224101
[29] Ben-David O, Rubinstein S M and Fineberg J 2010 Nature 463 76
[30] Rubinstein S M, Cohen G and Fineberg J 2004 Nature 430 1005
[31] Ozaki S, Mieda K, Matsuura T and Maegawa S 2018 Lubricants 6 38
[32] Fuadi Z, Takagi T, Miki H and Adachi K 2013 Proc. Inst. Mech. Eng. Part J.-J. Eng. Tribol. 227 1117
[33] Petrova D, Sharma D K, Vacha M, Bonn D, Brouwer A M and Weber B 2020 ACS Appl. Mater. Interfaces 12 9890
[34] Luo Z J, Song B J, Han J Y and Yan S Z 2019 Chin. Phys. B 28 104601
[35] Lowe M J S 2001 Encyclopedia of Vibration ed Braun S (Oxford: Elsevier) pp. 1559-1564
[36] Hao G L, Li Y C, Wang X F, Wang W G, Wang X F, Wang D and Li X Y 2020 Chin. Phys. Lett. 37 036102
[37] Li X Y, Lin H, Zhao Y J and Jia B H 2020 Chin. Phys. Lett. 37 106801
[38] Maegawa S, Itoigawa F and Nakamura T 2015 J. Adv. Mech. Des. Syst. Manuf. 9 311
[39] Song B J and Yan S Z 2017 Chin. Phys. B 26 074601
[40] Zhang P F, Song L J, Zou C L, Wang X, Wang C X, Li G and Zhang T C 2020 Chin. Phys. Lett. 37 104201
[41] Rafael C G and Richard E W 2007 Digital Image Processing 3rd edn (Prentice: Prentice-Hall) pp. 173-179
[42] Li B Q, Wu Z X and Wang S J 2019 Chin. Phys. B 28 90503
[1] An experimental method for quantitative analysis of real contact area based on the total reflection optical principle
Zhijun Luo(罗治军), Baojiang Song(宋保江), Jingyu Han(韩靖宇), Shaoze Yan(阎绍泽). Chin. Phys. B, 2019, 28(5): 054601.
[2] Evolution of real contact area during stick-slip movement observed by total reflection method
Zhijun Luo(罗治军), Baojiang Song(宋保江), Jingyu Han(韩靖宇), Shaoze Yan(阎绍泽). Chin. Phys. B, 2019, 28(10): 104601.
[3] Relationship between the real contact area and contact force in pre-sliding regime
Baojiang Song(宋保江), Shaoze Yan(阎绍泽). Chin. Phys. B, 2017, 26(7): 074601.
[4] A measurement method for distinguishing the real contact area of rough surfaces of transparent solids using improved Otsu technique
Song Bao-Jiang (宋保江), Yan Shao-Ze (阎绍泽), Xiang Wu-Wei-Kai (向吴维凯). Chin. Phys. B, 2015, 24(1): 014601.
No Suggested Reading articles found!