Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(2): 027504    DOI: 10.1088/1674-1056/abc15c
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

High-frequency magnetic properties and core loss of carbonyl iron composites with easy plane-like structures

Guo-Wu Wang(王国武)1, Chun-Sheng Guo(郭春生)2, Liang Qiao(乔亮)1, Tao Wang(王涛)1,3,†, and Fa-Shen Li(李发伸)
1 Key Laboratory for Magnetism and Magnetic Materials of MOE, Lanzhou University, Lanzhou 730000, China; 2 Guangzhou Newlife Magnet Electricity Co., Ltd., Guangzhou 511356, China; 3 Key Laboratory of Special Function Materials and Structure Design (Ministry of Education), Lanzhou University, Lanzhou 730000, China
Abstract  To fully release the potential of wide bandgap (WBG) semiconductors and achieve high energy density and efficiency, a carbonyl iron soft magnetic composite (SMC) with an easy plane-like structure is prepared. Due to this structure, the permeability of the composite increases by 3 times (from 7.5 to 21.5) at 100 MHz compared with to the spherical carbonyl iron SMC, and the permeability changes little at frequencies below 100 MHz. In addition, the natural resonance frequency of the composite shifts to higher frequencies at 1.7 GHz. The total core losses of the composites at 10, 20, and 30 mT are 80.0, 355.3, and 810.7 mW/cm3, respectively, at 500 kHz. Compared with the spherical carbonyl iron SMC, the core loss at 500 kHz is reduced by more than 60%. Therefore, this kind of soft magnetic composite with an easy plane-like structure is a good candidate for unlocking the potential of WBG semiconductors and developing the next-generation power electronics.
Keywords:  soft magnetic composite      high frequency magnetic property      power electronic      core loss  
Received:  23 August 2020      Revised:  18 September 2020      Accepted manuscript online:  15 October 2020
PACS:  75.30.Cr (Saturation moments and magnetic susceptibilities)  
  75.30.Gw (Magnetic anisotropy)  
  75.40.Gb (Dynamic properties?)  
  76.20.+q (General theory of resonances and relaxations)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11574122 and 51731001) and Joint Fund of Equipment Pre-Research and Ministry of Education, China (Grant No. 6141A02033242).
Corresponding Authors:  Corresponding author. E-mail: wtao@lzu.edu.cn   

Cite this article: 

Guo-Wu Wang(王国武), Chun-Sheng Guo(郭春生), Liang Qiao(乔亮), Tao Wang(王涛), and Fa-Shen Li(李发伸) High-frequency magnetic properties and core loss of carbonyl iron composites with easy plane-like structures 2021 Chin. Phys. B 30 027504

1 Silveyra J M, Ferrara E and Huber D L 2018 Science 362 eaao0195
2 Wu C, Huang M Q, Luo D H, Jiang Y Z and Yan M 2018 J. Alloys Compd. 741 35
3 Chen Y, Zhang L, Sun H S, Chen F F, Zhang P, Qu X H and Fan E D 2020 J. Alloys Compd. 813 152205
4 Zhou B, Dong Y Q, Liu L, Chang L, Bi F Q and Wang X M 2019 J. Magn. Magn. Mater. 474 1
5 Mori S, Mitsuoka T, Sonehara M, Saoto T and Matsushita N 2017 AIP Adv. 056657
6 Waide P and Brunner C U2011 International Energy Agency (IEA) working paper: Energy-efficiency policy opportunities for electric motor-driven systems
7 Iacopi F, Van Hove M, Charles M and Endo K 2015 MRS Bull. 40 390
8 Wang S F, Chiang Y J, Hsu Y F and Chen C H 2014 J. Magn. Magn. Mater. 365 119
9 Ahmed M A, Rady K E and Shams M S 2015 J. Alloys Compd. 622 269
10 Liu D, Chen X P, Ying Y, Zhang L, Li W C, Jiang L Q and Che S L 2016 Ceram. Int. 42 9152
11 Waqas H, Qureshi A H, Subhan K and Shahzad M 2012 Ceram. Int. 38 1235
12 Sun K, Lan Z W, Yu Z, Li L Z, Huang J M and Zhao X N 2008 J. Phys. D: Appl. Phys. 41 235002
13 Sun K, Pu Z Y, Yang Y, Chen L L, Yu Z, Wu C J, Jiang X N and Lan Z W 2016 J. Alloys Compd. 681 139
14 He X M, Yan S M, Li Z W, Zhang X, Song X Y, Qiao W, Zhong W and Dou Y W 2015 Chin. Phys. B 24 127502
15 Liu D, Gao S M, Jin R C, Wang F, Chu X X, Gao T P and Wang Y B 2019 Chin. Phys. B 28 057503
16 Zhou X, Hou Z L, Li F and Qi X 2010 Chin. Phys. Lett. 27 117501
17 Li W C, Cai H W, Kang Y, Ying Y, Yu J, Zheng J W, Qiao L, Jiang Y and Che S L 2019 Acta Mater. 167 267
18 Liu D, Wu C, Yan M and Wang J 2018 Acta Mater. 146 294
19 Zhou B, Chi Q, Dong Y Q, Liu L, Zhang Y Q, Chang L, Pan Y, He A, Li J W and Wang X M 2020 J. Magn. Magn. Mater. 494 165827
20 Zhang L R, Lv H, Liu X, Bai J M and Wei F L 2012 Chin. Phys. B 21 037502
21 Li W C, Zuo T L, Liu X H, Wei Q Q, Zhou X Y and Yao D S 2015 Chin. Phys. B 24 047503
22 Luo Z Y, Tang J, Ma B, Zhang Z Z, Jin Q Y and Wang J P 2012 Chin. Phys. Lett. 29 127501
23 Yao D S, Ge S H, Zhou X Y, Zhang B M and Zuo H P 2010 Chin. Phys. Lett. 27 067502
24 Snoek J L 1947 Nature 160 90
25 Snoek J L 1948 Physica 14 207
26 Xue D S, Li F S, Fan X L and Wen F S 2008 Chin. Phys. Lett. 25 4120
27 Haggstrom L, Grinasl L, Wappling R and Devanarayanan S 1973 Phys. Scr. 7 125
28 Tsutaoka T 2003 J. Appl. Phys. 93 2789
29 Liu X, Wu Peng, Wang P, Wang T, Qiao L and Li F S 2020 Chin. Phys. B 29 077506
[1] Hysteresis loss reduction in self-bias FeSi/SrFe12O19 soft magnetic composites
Shuangjiu Feng(冯双久), Jiangli Ni(倪江利), Feng Hu(胡锋), Xucai Kan(阚绪材), Qingrong Lv(吕庆荣), and Xiansong Liu(刘先松). Chin. Phys. B, 2022, 31(2): 027503.
[2] High permeability and bimodal resonance structure of flaky soft magnetic composite materials
Xi Liu(刘曦), Peng Wu(吴鹏), Peng Wang(王鹏), Tao Wang(王涛), Liang Qiao(乔亮), Fa-Shen Li(李发伸). Chin. Phys. B, 2020, 29(7): 077506.
[3] Fiber core mode leakage induced by refractive index variation in high-power fiber laser
Ping Yan(闫平), Xuejiao Wang(王雪娇), Yusheng Huang(黄昱升), Chen Fu(付晨), Junyi Sun(孙骏逸), Qirong Xiao(肖起榕), Dan Li(李丹), Mali Gong(巩马理). Chin. Phys. B, 2017, 26(3): 034205.
[4] Analysis of ferroresonance in neutral grounding system with nonlinear core loss
Hui Meng(惠萌), Zhang Yan-Bin(张彦斌), and Liu Chong-Xin(刘崇新). Chin. Phys. B, 2009, 18(5): 1787-1791.
[5] Existence of horseshoe maps in voltage-mode controlled buck converters
Dai Dong(戴栋), Tse Chi-Kong(谢智刚), and Ma Xi-Kui(马西奎). Chin. Phys. B, 2006, 15(11): 2535-2540.
No Suggested Reading articles found!