|
|
Transient transport processes in deformable porous media |
Cs. Mėszàros and Á. Bálint† |
Szent István University, Department of Physics and Process Control, Páter K.u.1., Gö dö llö , H-2103, Hungary; Szent István University, Department of Chemistry and Biochemistry, Páter K.u.1., Gö dö llö , H-2103, Hungary |
|
|
Abstract The basic partial differential equations relevant for convection-diffusion and convection-diffusion-wave phenomena are presented and solved analytically by using the MAPLE symbolic computer algebra system. The possible general nonlinear character of the constitutive equation of the convection-discussion process is replaced by a direct posteriori stochastic refinement of its solution represented for Dirichlet-type boundary conditions. A thermodynamic analysis is performed for connecting the relaxation time constants and Jacobi-determinants of deformations at transient transport processes. Finally, a new procedure for general description of coupled transport processes on the basis of the formalism originally developed for convection-free phenomena is presented by matrix analysis methods in the Fourier space.
|
Received: 28 March 2011
Revised: 12 August 2011
Accepted manuscript online:
|
PACS:
|
05.70.Ln
|
(Nonequilibrium and irreversible thermodynamics)
|
|
47.56+r
|
|
|
02.10.Yn
|
(Matrix theory)
|
|
Fund: Project support by the Hungarian-German Foundation MÖB-DAAD (Grant No. P-MÖB/843). |
Cite this article:
Cs. Mėszàros and 'A. Bàlint Transient transport processes in deformable porous media 2011 Chin. Phys. B 20 110507
|
[1] |
Jou D, Casas-Vazquez J and Lebon G 2001 Extended Irreversible Thermodynamics 3rd ed (Berlin-Heidelberg-New York: Springer-Verlag) p. 24
|
[2] |
Uchaikin V V 2003 Physics-Uspekhi 46 821
|
[3] |
Cattaneo M C 1948 Atti Sem. Mat. Fis. Univ. Modena 3 83
|
[4] |
Cattaneo M C 1958 Compt. Rend. 247 431
|
[5] |
Vernotte P 1958 Compt. Rend. 246 31
|
[6] |
Maxwell J C 1867 Phil. Trans. Roy. Soc. London 157 49
|
[7] |
Wiegand S 2004 J. Phys. Cond. Mat. 16 R357
|
[8] |
Mostacci D, Molinari V and Premuda M 2009 Eur. Phys. J. B 70 127
|
[9] |
Coussot P 2000 Eur. Phys. J. B 15 557
|
[10] |
Ryzhkov I I and Shevtsova V M 2009 Phys. Rev. E 79 026308
|
[11] |
Glässl M, Hilt M and Zimmermann W 2010 Eur. Phys. J. E 32 265
|
[12] |
Porras G O, Couture F and Roques M 2007 Drying Technology 25 1215
|
[13] |
Bird R B and de Gennes P G 1983 Physica A 118 43
|
[14] |
Fan E 2000 Phys. Lett. A 277 212
|
[15] |
Elwakil S A, El-Labany S K, Zahran M A and Sabry R 2004 Comp. Phys. Comm. 158 113
|
[16] |
Conte R and Musette M 2000 Rep. Math. Phys. 46 77
|
[17] |
Conte R and Musette M 2008 The Painlevé Handbook (Dordrecht: Springer Science + Business Media B.V., The Netherlands and Bristol: Canopus Publishing Limited) p. 33
|
[18] |
Knabner P and Angermann L 2000 Numerik Partieller Differentialgleichungen (Eine Anwendungsorientierte Einführung) (Berlin-Heidelberg-New York: Springer-Verlag) p. 323
|
[19] |
Pascal J P 1996 Physica A 223 99
|
[20] |
MAPLE 10 A Symbolic Computation System Waterloo Maple Inc. (2005)
|
[21] |
Kirschner I, Mészáros Cs, Bálint á, Gottschalk K and Farkas I 2004 J. Phys. A: Math. Gen. 37 1193
|
[22] |
Kirschner I, Bálint á, Csikja R, Gyarmati B, Balogh A and Mészáros Cs 2007 J. Phys. A: Math. Theor. 40 9361
|
[23] |
Gottschalk K, Mészáros Cs, Földi A, Gyarmati B, Farkas I and Bálint á 2008 Mech. Eng. Lett. 1 200
|
[24] |
Stauffer D and Aharony A 1994 Introduction to Percolation Theory 2nd ed (London: Taylor & Francis: London) pp. 70, 130
|
[25] |
Grimmett G 1999 Percolation 2nd ed (Grundlehren der mathematischen Wissenschaften) (Berlin-Heidelberg-New York: Springer-Verlag) p. 233
|
[26] |
Tsimpanogiannis I N, Yortsos Y, Poulou S, Kanellopoulos N and Stubos A K 1999 Phys. Rev. E 59 4353
|
[27] |
Prat M 1995 Int. J. Multiphase Flow 5 875
|
[28] |
Huinink H P, Pel L, Michels M A J and Prat M 2002 Eur. Phys. J. E 9 487
|
[29] |
Surasani V K, Metzger T and Tsotsas E 2009 Transp. Porous Media 80 431
|
[30] |
de Gennes P G 1976 La Recherche 7 919
|
[31] |
Mitescu C D, Ottavi H and Roussenq J 1978 AIP Conf. Proc. 40 377
|
[32] |
Straley J P 1980 J. Phys. C 9 2991
|
[33] |
Mészáros Cs, Farkas I and Bálint á 2001 Math. Comp. Sim. 56 395
|
[34] |
Mészáros Cs, Farkas I, Bálint á and Buzás J 2004 Drying Technology 22 71
|
[35] |
Mészáros Cs, Bálint á, Kirschner I, Gottschalk K and Farkas I 2007 Drying Technology 25 1297
|
[36] |
Mészáros Cs, Gottschalk K, Farkas I and Bálint á 2009 AFSIA 2009 European Drying Conference 14th and 15th May, 2009, Lyon, CAHIER de láFSIA, Ncirc 23, p. 20
|
[37] |
Mészáros Cs, Gottschalk K, Farkas I, Selaković and Bálint á 2010 17^th International Drying Symposium (IDS 2010) Magdeburg, Germany, 3-6 October 2010, p. 149
|
[38] |
Gyarmati I 1970 Non-Equilibrium Thermodynamics (Field Theory and Variational Principles) (Berlin-Heidelberg-New York: Springer-Verlag) Ch II
|
[39] |
Gyarmati I 1977 J. Non-Equilib. Thermodynamics 2 233
|
[40] |
de Groot S R and Mazur P 1962 Non-equilibrium Thermodynamics (Amsterdam: North-Holland Publ. Co.) p. 106
|
[41] |
Depireux N and Lebon G 2001 J. Non-Newt. Fluid Mech. 96 105
|
[42] |
Liu D, Huai X, Hu X and Jiang F 2004 Drying Technology 22 145
|
[43] |
Hu S T, Li X Q, Liu G D, Lian L M and Li L N 1999 Drying Technology 17 1859
|
[44] |
Gomez H, Colominas I, Navarrina F and Casteleiro M 2007 Comp. Meth. Appl. Mech. Eng. 196 1757
|
[45] |
Gomez H, Colominas I, Navarrina F, Paris J and Casteleiro M 2010 Arch. Comp. Meth. Eng. 17 191
|
[46] |
Landau L D and Lifshitz E M 1987 Fluid Mechanics, Course of Theoretical Physics Vol. 6 (Oxford: Butterworth-Heinemann) p. 308
|
[47] |
Allanic N, Salagnac P and Glouannec P 2007 Heat and Mass Transfer 43 1087
|
[48] |
Gantmacher F R 2000 The Theory of Matrices Vol. 1. (Providence, Rhode Island: AMS Chelsea Publishing) p. 101
|
[49] |
Rózsa P 2009 Introduction to Matrix Theory (Bevezetés a mátrixelméletbe-in Hungarian) (Budapest: Typotex) p. 314
|
[50] |
Prasolov V V 1994 Problems and Theorems in Linear Algebra (Translations of Mathematical Monographs, Vol. 134), (American Mathematical Society) p. 68
|
[51] |
Fa`a di Bruno F 1857 Quart. J. Pure Appl. Math. 1 359
|
[52] |
Johnson W P 2002 Am. Math. Monthly 109 217
|
[53] |
Lebedev N N 1972 Special Functions & Their Applications (New York: Dover Publication Inc.) p. 65
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|