Please wait a minute...
Chin. Phys. B, 2011, Vol. 20(11): 110507    DOI: 10.1088/1674-1056/20/11/110507
GENERAL Prev   Next  

Transient transport processes in deformable porous media

Cs. Mėszàros and Á. Bálint
Szent István University, Department of Physics and Process Control, Páter K.u.1., Gö dö llö , H-2103, Hungary; Szent István University, Department of Chemistry and Biochemistry, Páter K.u.1., Gö dö llö , H-2103, Hungary
Abstract  The basic partial differential equations relevant for convection-diffusion and convection-diffusion-wave phenomena are presented and solved analytically by using the MAPLE symbolic computer algebra system. The possible general nonlinear character of the constitutive equation of the convection-discussion process is replaced by a direct posteriori stochastic refinement of its solution represented for Dirichlet-type boundary conditions. A thermodynamic analysis is performed for connecting the relaxation time constants and Jacobi-determinants of deformations at transient transport processes. Finally, a new procedure for general description of coupled transport processes on the basis of the formalism originally developed for convection-free phenomena is presented by matrix analysis methods in the Fourier space.
Keywords:  convection      binary mixtures      relaxation time      matrix polynomials  
Received:  28 March 2011      Revised:  12 August 2011      Accepted manuscript online: 
PACS:  05.70.Ln (Nonequilibrium and irreversible thermodynamics)  
  47.56+r  
  02.10.Yn (Matrix theory)  
Fund: Project support by the Hungarian-German Foundation MÖB-DAAD (Grant No. P-MÖB/843).

Cite this article: 

Cs. Mėszàros and 'A. Bàlint Transient transport processes in deformable porous media 2011 Chin. Phys. B 20 110507

[1] Jou D, Casas-Vazquez J and Lebon G 2001 Extended Irreversible Thermodynamics 3rd ed (Berlin-Heidelberg-New York: Springer-Verlag) p. 24
[2] Uchaikin V V 2003 Physics-Uspekhi 46 821
[3] Cattaneo M C 1948 Atti Sem. Mat. Fis. Univ. Modena 3 83
[4] Cattaneo M C 1958 Compt. Rend. 247 431
[5] Vernotte P 1958 Compt. Rend. 246 31
[6] Maxwell J C 1867 Phil. Trans. Roy. Soc. London 157 49
[7] Wiegand S 2004 J. Phys. Cond. Mat. 16 R357
[8] Mostacci D, Molinari V and Premuda M 2009 Eur. Phys. J. B 70 127
[9] Coussot P 2000 Eur. Phys. J. B 15 557
[10] Ryzhkov I I and Shevtsova V M 2009 Phys. Rev. E 79 026308
[11] Glässl M, Hilt M and Zimmermann W 2010 Eur. Phys. J. E 32 265
[12] Porras G O, Couture F and Roques M 2007 Drying Technology 25 1215
[13] Bird R B and de Gennes P G 1983 Physica A 118 43
[14] Fan E 2000 Phys. Lett. A 277 212
[15] Elwakil S A, El-Labany S K, Zahran M A and Sabry R 2004 Comp. Phys. Comm. 158 113
[16] Conte R and Musette M 2000 Rep. Math. Phys. 46 77
[17] Conte R and Musette M 2008 The Painlevé Handbook (Dordrecht: Springer Science + Business Media B.V., The Netherlands and Bristol: Canopus Publishing Limited) p. 33
[18] Knabner P and Angermann L 2000 Numerik Partieller Differentialgleichungen (Eine Anwendungsorientierte Einführung) (Berlin-Heidelberg-New York: Springer-Verlag) p. 323
[19] Pascal J P 1996 Physica A 223 99
[20] MAPLE 10 A Symbolic Computation System Waterloo Maple Inc. (2005)
[21] Kirschner I, Mészáros Cs, Bálint á, Gottschalk K and Farkas I 2004 J. Phys. A: Math. Gen. 37 1193
[22] Kirschner I, Bálint á, Csikja R, Gyarmati B, Balogh A and Mészáros Cs 2007 J. Phys. A: Math. Theor. 40 9361
[23] Gottschalk K, Mészáros Cs, Földi A, Gyarmati B, Farkas I and Bálint á 2008 Mech. Eng. Lett. 1 200
[24] Stauffer D and Aharony A 1994 Introduction to Percolation Theory 2nd ed (London: Taylor & Francis: London) pp. 70, 130
[25] Grimmett G 1999 Percolation 2nd ed (Grundlehren der mathematischen Wissenschaften) (Berlin-Heidelberg-New York: Springer-Verlag) p. 233
[26] Tsimpanogiannis I N, Yortsos Y, Poulou S, Kanellopoulos N and Stubos A K 1999 Phys. Rev. E 59 4353
[27] Prat M 1995 Int. J. Multiphase Flow 5 875
[28] Huinink H P, Pel L, Michels M A J and Prat M 2002 Eur. Phys. J. E 9 487
[29] Surasani V K, Metzger T and Tsotsas E 2009 Transp. Porous Media 80 431
[30] de Gennes P G 1976 La Recherche 7 919
[31] Mitescu C D, Ottavi H and Roussenq J 1978 AIP Conf. Proc. 40 377
[32] Straley J P 1980 J. Phys. C 9 2991
[33] Mészáros Cs, Farkas I and Bálint á 2001 Math. Comp. Sim. 56 395
[34] Mészáros Cs, Farkas I, Bálint á and Buzás J 2004 Drying Technology 22 71
[35] Mészáros Cs, Bálint á, Kirschner I, Gottschalk K and Farkas I 2007 Drying Technology 25 1297
[36] Mészáros Cs, Gottschalk K, Farkas I and Bálint á 2009 AFSIA 2009 European Drying Conference 14th and 15th May, 2009, Lyon, CAHIER de láFSIA, Ncirc 23, p. 20
[37] Mészáros Cs, Gottschalk K, Farkas I, Selaković and Bálint á 2010 17^th International Drying Symposium (IDS 2010) Magdeburg, Germany, 3-6 October 2010, p. 149
[38] Gyarmati I 1970 Non-Equilibrium Thermodynamics (Field Theory and Variational Principles) (Berlin-Heidelberg-New York: Springer-Verlag) Ch II
[39] Gyarmati I 1977 J. Non-Equilib. Thermodynamics 2 233
[40] de Groot S R and Mazur P 1962 Non-equilibrium Thermodynamics (Amsterdam: North-Holland Publ. Co.) p. 106
[41] Depireux N and Lebon G 2001 J. Non-Newt. Fluid Mech. 96 105
[42] Liu D, Huai X, Hu X and Jiang F 2004 Drying Technology 22 145
[43] Hu S T, Li X Q, Liu G D, Lian L M and Li L N 1999 Drying Technology 17 1859
[44] Gomez H, Colominas I, Navarrina F and Casteleiro M 2007 Comp. Meth. Appl. Mech. Eng. 196 1757
[45] Gomez H, Colominas I, Navarrina F, Paris J and Casteleiro M 2010 Arch. Comp. Meth. Eng. 17 191
[46] Landau L D and Lifshitz E M 1987 Fluid Mechanics, Course of Theoretical Physics Vol. 6 (Oxford: Butterworth-Heinemann) p. 308
[47] Allanic N, Salagnac P and Glouannec P 2007 Heat and Mass Transfer 43 1087
[48] Gantmacher F R 2000 The Theory of Matrices Vol. 1. (Providence, Rhode Island: AMS Chelsea Publishing) p. 101
[49] Rózsa P 2009 Introduction to Matrix Theory (Bevezetés a mátrixelméletbe-in Hungarian) (Budapest: Typotex) p. 314
[50] Prasolov V V 1994 Problems and Theorems in Linear Algebra (Translations of Mathematical Monographs, Vol. 134), (American Mathematical Society) p. 68
[51] Fa`a di Bruno F 1857 Quart. J. Pure Appl. Math. 1 359
[52] Johnson W P 2002 Am. Math. Monthly 109 217
[53] Lebedev N N 1972 Special Functions & Their Applications (New York: Dover Publication Inc.) p. 65
[1] Numerical simulation on dendritic growth of Al-Cu alloy under convection based on the cellular automaton lattice Boltzmann method
Kang-Wei Wang(王康伟), Meng-Wu Wu(吴孟武), Bing-Hui Tian(田冰辉), and Shou-Mei Xiong(熊守美). Chin. Phys. B, 2022, 31(9): 098105.
[2] Effects of Prandtl number in two-dimensional turbulent convection
Jian-Chao He(何建超), Ming-Wei Fang(方明卫), Zhen-Yuan Gao(高振源), Shi-Di Huang(黄仕迪), and Yun Bao(包芸). Chin. Phys. B, 2021, 30(9): 094701.
[3] Instability of single-walled carbon nanotubes conveying Jeffrey fluid
Bei-Nan Jia(贾北楠) and Yong-Jun Jian(菅永军). Chin. Phys. B, 2021, 30(4): 044601.
[4] Asymmetric coherent rainbows induced by liquid convection
Tingting Shi(施婷婷), Xuan Qian(钱轩), Tianjiao Sun(孙天娇), Li Cheng(程力), Runjiang Dou(窦润江), Liyuan Liu(刘力源), and Yang Ji(姬扬). Chin. Phys. B, 2021, 30(12): 124208.
[5] Characterization of size effect of natural convection in melting process of phase change material in square cavity
Shi-Hao Cao(曹世豪) and Hui Wang(王辉). Chin. Phys. B, 2021, 30(10): 104403.
[6] Phase separation and super diffusion of binary mixtures ofactive and passive particles
Yan Wang(王艳), Zhuanglin Shen(谌庄琳), Yiqi Xia(夏益祺), Guoqiang Feng(冯国强), Wende Tian(田文得). Chin. Phys. B, 2020, 29(5): 053103.
[7] Strong coupling between height of gaps and thickness of thermal boundary layer in partitioned convection system
Ze-Peng Lin(林泽鹏), Yun Bao(包芸). Chin. Phys. B, 2019, 28(9): 094701.
[8] A lattice Boltzmann-cellular automaton study on dendrite growth with melt convection in solidification of ternary alloys
Dong-Ke Sun(孙东科), Zhen-Hua Chai(柴振华), Qian Li(李谦), Guang Lin(林光). Chin. Phys. B, 2018, 27(8): 088105.
[9] Numerical study of heat-transfer in two-and quasi-two-dimensional Rayleigh-Bénard convection
Zhen-Yuan Gao(高振源), Jia-Hui Luo(罗嘉辉), Yun Bao(包芸). Chin. Phys. B, 2018, 27(10): 104702.
[10] Instabilities of thermocapillary-buoyancy convection in open rectangular liquid layers
Huan Jiang(姜欢), Li Duan(段俐), Qi Kang(康琦). Chin. Phys. B, 2017, 26(11): 114703.
[11] Phase behaviors of binary mixtures composed of electron-richand electron-poor triphenylene discotic liquid crystals
Lingling An(安玲玲), Min Jing(景敏), Bo Xiao(肖波), Xiao-Yan Bai(白小燕), Qing-Dao Zeng(曾庆祷), Ke-Qing Zhao(赵可清). Chin. Phys. B, 2016, 25(9): 096402.
[12] Improved kernel gradient free-smoothed particle hydrodynamics and its applications to heat transfer problems
Juan-Mian Lei(雷娟棉) and Xue-Ying Peng(彭雪莹). Chin. Phys. B, 2016, 25(2): 020202.
[13] Crossover of large to small radius polaron in ionic crystals
M I Umo. Chin. Phys. B, 2016, 25(11): 117104.
[14] Phase behaviors of binary mixtures composed of banana-shaped and calamitic mesogens
M. Cvetinov, D. Ž. Obadović, M. Stojanović, A. Vajda, K. Fodor-Csorba, N. Eber, I. Ristić. Chin. Phys. B, 2014, 23(9): 096402.
[15] Effect of optical pumping on the momentum relaxation time of graphene in the terahertz range
Zuo Zhi-Gao (左志高), Wang Ping (王平), Ling Fu-Ri (凌福日), Liu Jin-Song (刘劲松), Yao Jian-Quan (姚建铨). Chin. Phys. B, 2013, 22(9): 097304.
No Suggested Reading articles found!