Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(11): 110504    DOI: 10.1088/1674-1056/abbbfe
GENERAL Prev   Next  

Memristor-based hyper-chaotic circuit for image encryption

Jiao-Jiao Chen(陈娇娇)1,2, Deng-Wei Yan(闫登卫)1,2, Shu-Kai Duan(段书凯)1,2,3,4,5,6, and Li-Dan Wang(王丽丹)1,2,3,4,5, †
1 College of Electronic and Information Engineering, Southwest University, Chongqing 400715, China
2 Chongqing Key Laboratory of Nonlinear Circuits and Intelligent Information Processing, Southwest University, Chongqing 400715, China
3 Intelligent Transmission and Control Technology Joint Engineering Laboratory, Chongqing 400715, China
4 Brain-inspired Computing and Intelligent Control Chongqing Key Laboratory, Chongqing 400715, China
5 Chongqing Collaborative Innovation Center for Brain Science, Chongqing 400715, China
6 School of Artificial Intelligence, Southwest University, Chongqing 400715, China
Abstract  

The memristor is a kind of non-linear element with memory function, which can be applied to chaotic systems to increase signal randomness and complexity. In this paper, a new four-dimensional hyper-chaotic system is designed based on a flux controlled memristor model, which can generate complex chaotic attractors. The basic dynamic theory analysis and numerical simulations of the system, such as the stability of equilibrium points, the Lyapunov exponents and dimension, Poincare maps, the power spectrum, and the waveform graph prove that it has rich dynamic behaviors. Then, the circuit implementation of this system is established. The consistency of simulation program with integrated circuit emphasis (SPICE) simulation and numerical analysis proves the ability to generate chaos. Finally, a new image encryption scheme is designed by using the memristor-based hyper-chaotic system proposed in this paper. The scheme involves a total of two encryptions. By using different security analysis factors, the proposed algorithm is compared with other image encryption schemes, including correlation analysis, information entropy, etc. The results show that the proposed image encryption scheme has a large key space and presents a better encryption effect.

Keywords:  memristor      SPICE simulation      hyper-chaotic system      image encryption  
Received:  30 April 2020      Revised:  04 September 2020      Accepted manuscript online:  28 September 2020
Fund: the National Key Research and Development Program of China (Grant No. 2018YFB1306600), the National Natural Science Foundation of China (Grant Nos. 62076207 and 62076208), and the Fundamental Science and Advanced Technology Research Foundation of Chongqing, China (Grant Nos. cstc2017jcyjBX0050).
Corresponding Authors:  Corresponding author. E-mail: ldwang@swu.edu.cn   

Cite this article: 

Jiao-Jiao Chen(陈娇娇), Deng-Wei Yan(闫登卫), Shu-Kai Duan(段书凯), and Li-Dan Wang(王丽丹) Memristor-based hyper-chaotic circuit for image encryption 2020 Chin. Phys. B 29 110504

Fig. 1.  

Phase portraits of system (1) with a = 3, b = 1, c = 9, e = 0.2, m = 1 in (a) xy plane, (b) yz plane, (c) xz plane, and (d) xw plane.

x y z w
S1 −155885327979.4965 −519616.0680 5.1961 −300000.9767
S2 155885376219.5367 519616.1484 −5.1961 −300001.0232
S3 0 0 0 0
Table 1.  

Equilibrium points of formula (5) when x < C5.

x y z w
S4 −5.9999× 10−38 −2.0020× 10−38 −5.999× 10−38 0
S5 −0.00003216 −0.00001072 −0.00003216 0
S6 260428016091 −67162084306 −5.19615242 38776047452.94
S7 −26043446442 −67162915693 5.196152427 −38776527455.9
Table 2.  

Equilibrium points of formula (4) when C5xC6.

x y z w
S8 −3899109.2976 −2598.3098032 5.1978846064 −1500.63494764
S9 3902904.93013 2599.57438182 −5.197883763 −1501.36505241
S10 0.00126415720 0.00042138576 0.0012641572 0.000000059188
Table 3.  

Equilibrium points of formula (5) when x > C6.

Fig. 2.  

Poincare map of (a) x = 0 and (b) y = 0.

Fig. 3.  

Lyapunov exponents of the system with a = 3, b = 1, c = 9, e = 0.2, m = 1.

Fig. 4.  

Power spectrum of the system.

Fig. 5.  

Time domain waveform of (a) ty and (b) tw.

Fig. 6.  

Hardware circuit implementation of new hyper-chaotic system.

Fig. 7.  

SPICE simulation results in (a) xy, (b) yz, (c) xz, and (d) xw planes of the system.

Fig. 8.  

Block diagram of proposed image encryption.

Fig. 9.  

Plain image of (a) Lena, (b) Cameraman, and (c) Girl; first encrypted image of (d) Lena, (e) Cameraman, and (f) Girl.

Fig. 10.  

Second encrypted image of (a) Lena, (b) Cameraman, and (c) Girl; decrypted image of (d) Lena, (e) Cameraman, and (f) Girl.

Fig. 11.  

Gray histogram of plaintext of (a) Lena, (b) Cameraman, (c) Girl; gray histogram of ciphered image of (d) Lena, (e) Cameraman, and (f) Girl.

Fig. 12.  

Correlation distribution of (a) plaintext and (b) ciphertext image in horizontal, vertical, and diagonal direction of Lena.

Fig. 13.  

Correlation distribution of (a) plaintext and (b) ciphertext image in horizontal, vertical, and diagonal direction of Cameraman.

Fig. 14.  

Correlation distribution of (a) plaintext and (b) ciphertext image in horizontal, vertical, and diagonal direction of Girl.

Test image Plain image Cipher image
Horizontal Vertical Diagonal Horizontal Vertical Diagonal
Lena (proposed) 0.99570 0.98470 0.99080 −0.00570 0.00160 0.00210
Lena (Ref. [17]) 0.97190 0.94260 0.91990 0.01020 0.00670 0.00520
Lena (Ref. [20]) 0.96457 0.97864 0.95098 −0.02457 −0.02264 −0.01930
Cameraman 0.99290 0.98040 0.98810 0.00590 0.00800 −0.00170
Girl 0.99620 0.98970 0.99270 0.00830 0.00520 −0.00460
Table 4.  

Correlation coefficients of plain image and cipher image.

Test image Plaintext image Ciphertext image
Lena (proposed) 7.39820 7.96920
Lena (Ref. [17]) 7.99740
Lena (Ref. [20]) 7.43087 7.98859
Cameraman 7.00060 7.96820
Girl 7.49570 7.98780
Table 5.  

Information entropy of test images.

Test image NPCR/% UACI/% BACI/%
Lena 99.62 33.42 26.73
Cameraman 99.59 33.54 26.79
Girl 99.60 33.43 26.76
Table 6.  

Values of NPCR, UACI, and BACI of different images after modifying one pixel value.

[1]
Lorenz E N 1963 J. Atmos. Sci. 20 130 DOI: 10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2
[2]
Chen G R 1999 Int. J. Bifurcat. Chaos. 9 1465 DOI: 10.1142/S0218127499001024
[3]
Bao B C, Liu Z, Xu J P 2009 J. Syst. Eng. Electron. 20 1179 http://www.jseepub.com//EN/abstract/abstract8442.shtml
[4]
Xiao Y Q, Wang Z Y, Cao J, Long C X, Chen Y T, Deng R, Shi J, Liu Y 2019 Opt. Commun. 440 126 DOI: 10.1016/j.optcom.2019.02.033
[5]
Chua L O 1971 IEEE Trans. Circ. Theor. 18 507 DOI: 10.1109/TCT.1971.1083337
[6]
Strukov D B, Snider G S, Stewart D R, Williams R S 2008 Nature 453 80 DOI: 10.1038/nature06932
[7]
Yang Y C, Pan F, Liu Q, Liu M, Zeng F 2009 Nano. Lett. 9 1636 DOI: 10.1021/nl900006g
[8]
Shin S H, Kyungmin Kim, Kang S M 2010 IEEE Trans. 10 1536
[9]
Itoh M, Chua L O 2008 Int. J. Bifurcat. Chaos 18 3183 DOI: 10.1142/S0218127408022354
[10]
Kyprianidis I M, Volos Ch K, Stouboulos I N 2010 AIP Conf. Proc. 1203 626 DOI: 10.1063/1.3322524
[11]
Stork M, Hrusak J, Mayer D 2009 Electrical and Electronics Engineering December 2009 https://www.researchgate.net/publication/224091520_Feedback_systems_with_memristors
[12]
Yang D W, Wang L D, Duan S K 2018 Acta Phys. Sin. 67 110502 in Chinese DOI: 10.7498/aps.67.20180025
[13]
Lv Y W, Min F H 2019 Acta Phys. Sin. 68 130502 in Chinese DOI: 10.7498/aps.68.20190453
[14]
Wang M J, Deng Y, Liao X H, Li Z J, Ma M L, Zeng Y C 2019 Int. J. Nonlinear Mech. 111 149 DOI: 10.1016/j.ijnonlinmec.2019.02.009
[15]
Li C H, Luo G C, Qin K 2017 Nonlinear Dyn. 87 127 DOI: 10.1007/s11071-016-3030-8
[16]
Wang X Y, Wang Y, Wang S W, Zhang Y Q, Wu X J 2018 Chin. Phys. B 27 110502 DOI: 10.1088/1674-1056/27/11/110502
[17]
Ye X L, Wang X Y, Gao S, Mou J, Wang Z S, Yang F F 2019 Nonlinear Dyn. 99 1489 DOI: 10.1007/s11071-019-05370-2
[18]
Wang L M, Dong T D, Ge M F 2019 Appl. Math. Comput. 347 293 DOI: 10.1109/ACCESS.2018.2872745
[19]
Zhang Y, Tang Y J 2017 Multimed. Tools Appl. 77 6647 DOI: 10.1007/s11042-017-4577-1
[20]
Yang F F, Mou J, Sun K H, Cao Y H, Jin J Y 2019 IEEE Access DOI: 10.1109/ACCESS.2019.2914722
[21]
Zhang L M, Sun K H, Liu W H, He S B 2017 Chin. Phys. B 26 100504 DOI: 10.1088/1674-1056/26/10/100504
[22]
Wang B, Zou F C, Cheng J 2018 Optik 154 538 DOI: 10.1016/j.ijleo.2017.10.080
[23]
Wang X Y, Xie Y X, Qin X 2012 Chin. Phys. B 21 040504 DOI: 10.1088/1674-1056/21/4/040504
[24]
Wang Z L, Min F H, Wang E R 2016 AIP Adv. 6 095316 DOI: 10.1063/1.4963743
[25]
Shi H, Wang L D 2019 Acta Phys. Sin. 68 200501 in Chinese DOI: 10.7498/aps.68.20190553
[26]
Zhang Y 2016 Chaos digital image encryption 1 Beijing Tsinghua University Press 218 in Chinese https://xueshu.baidu.com/usercenter/paper/show?paperid=380477c17efa30de7e91325902f70850&site=xueshu_se
[1] A color image encryption algorithm based on hyperchaotic map and DNA mutation
Xinyu Gao(高昕瑜), Bo Sun(孙博), Yinghong Cao(曹颖鸿), Santo Banerjee, and Jun Mou(牟俊). Chin. Phys. B, 2023, 32(3): 030501.
[2] Hopf bifurcation and phase synchronization in memristor-coupled Hindmarsh-Rose and FitzHugh-Nagumo neurons with two time delays
Zhan-Hong Guo(郭展宏), Zhi-Jun Li(李志军), Meng-Jiao Wang(王梦蛟), and Ming-Lin Ma(马铭磷). Chin. Phys. B, 2023, 32(3): 038701.
[3] Asymmetric image encryption algorithm based ona new three-dimensional improved logistic chaotic map
Guo-Dong Ye(叶国栋), Hui-Shan Wu(吴惠山), Xiao-Ling Huang(黄小玲), and Syh-Yuan Tan. Chin. Phys. B, 2023, 32(3): 030504.
[4] Lossless embedding: A visually meaningful image encryption algorithm based on hyperchaos and compressive sensing
Xing-Yuan Wang(王兴元), Xiao-Li Wang(王哓丽), Lin Teng(滕琳), Dong-Hua Jiang(蒋东华), and Yongjin Xian(咸永锦). Chin. Phys. B, 2023, 32(2): 020503.
[5] Memristor's characteristics: From non-ideal to ideal
Fan Sun(孙帆), Jing Su(粟静), Jie Li(李杰), Shukai Duan(段书凯), and Xiaofang Hu(胡小方). Chin. Phys. B, 2023, 32(2): 028401.
[6] Memristor hyperchaos in a generalized Kolmogorov-type system with extreme multistability
Xiaodong Jiao(焦晓东), Mingfeng Yuan(袁明峰), Jin Tao(陶金), Hao Sun(孙昊), Qinglin Sun(孙青林), and Zengqiang Chen(陈增强). Chin. Phys. B, 2023, 32(1): 010507.
[7] High throughput N-modular redundancy for error correction design of memristive stateful logic
Xi Zhu(朱熙), Hui Xu(徐晖), Weiping Yang(杨为平), Zhiwei Li(李智炜), Haijun Liu(刘海军), Sen Liu(刘森), Yinan Wang(王义楠), and Hongchang Long(龙泓昌). Chin. Phys. B, 2023, 32(1): 018502.
[8] High-performance artificial neurons based on Ag/MXene/GST/Pt threshold switching memristors
Xiao-Juan Lian(连晓娟), Jin-Ke Fu(付金科), Zhi-Xuan Gao(高志瑄),Shi-Pu Gu(顾世浦), and Lei Wang(王磊). Chin. Phys. B, 2023, 32(1): 017304.
[9] Firing activities in a fractional-order Hindmarsh-Rose neuron with multistable memristor as autapse
Zhi-Jun Li(李志军), Wen-Qiang Xie(谢文强), Jin-Fang Zeng(曾金芳), and Yi-Cheng Zeng(曾以成). Chin. Phys. B, 2023, 32(1): 010503.
[10] Exponential sine chaotification model for enhancing chaos and its hardware implementation
Rui Wang(王蕊), Meng-Yang Li(李孟洋), and Hai-Jun Luo(罗海军). Chin. Phys. B, 2022, 31(8): 080508.
[11] Synchronously scrambled diffuse image encryption method based on a new cosine chaotic map
Xiaopeng Yan(闫晓鹏), Xingyuan Wang(王兴元), and Yongjin Xian(咸永锦). Chin. Phys. B, 2022, 31(8): 080504.
[12] Fabrication and investigation of ferroelectric memristors with various synaptic plasticities
Qi Qin(秦琦), Miaocheng Zhang(张缪城), Suhao Yao(姚苏昊), Xingyu Chen(陈星宇), Aoze Han(韩翱泽),Ziyang Chen(陈子洋), Chenxi Ma(马晨曦), Min Wang(王敏), Xintong Chen(陈昕彤), Yu Wang(王宇),Qiangqiang Zhang(张强强), Xiaoyan Liu(刘晓燕), Ertao Hu(胡二涛), Lei Wang(王磊), and Yi Tong(童祎). Chin. Phys. B, 2022, 31(7): 078502.
[13] Design and FPGA implementation of a memristor-based multi-scroll hyperchaotic system
Sheng-Hao Jia(贾生浩), Yu-Xia Li(李玉霞), Qing-Yu Shi(石擎宇), and Xia Huang(黄霞). Chin. Phys. B, 2022, 31(7): 070505.
[14] Pulse coding off-chip learning algorithm for memristive artificial neural network
Ming-Jian Guo(郭明健), Shu-Kai Duan(段书凯), and Li-Dan Wang(王丽丹). Chin. Phys. B, 2022, 31(7): 078702.
[15] The dynamics of a memristor-based Rulkov neuron with fractional-order difference
Yan-Mei Lu(卢艳梅), Chun-Hua Wang(王春华), Quan-Li Deng(邓全利), and Cong Xu(徐聪). Chin. Phys. B, 2022, 31(6): 060502.
No Suggested Reading articles found!