Abstract The prediction of protein-protein complex structures is crucial for fundamental understanding of celluar processes and drug design. Despite significant progresses in the field, the accuracy of ab initio docking without using any experimental restraints remains relatively low. With the rapid advancement of structural biology, more and more information about binding can be derived from experimental data such as NMR experiments or chemical cross-linking. In addition, information about the residue contacts between proteins may also be derived from their sequences by using evolutionary analysis or deep learning. Here, we propose an efficient approach to incorporate interface residue restraints into protein-protein docking, which is named as HDOCKsite. Extensive evaluations on the protein-protein docking benchmark 4.0 showed that HDOCKsite significantly improved the docking performance and obtained a much higher success rate in binding mode predictions than original ab initio docking.
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 31670724) and the Startup Grant of Huazhong University of Science and Technology.
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.