Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(11): 114211    DOI: 10.1088/1674-1056/abab6c
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Propagation of shaped beam through uniaxially anisotropic chiral slab

Ming-Jun Wang(王明军)1,4, †, Jia-Lin Zhang(张佳琳)1, Hua-Yong Zhang(张华永)2, and Zi-Han Wang(王梓涵)3$
1 School of Automation and Information Engineering, Xi’an University of Technology, Xi’an 710048, China
2 School of Electronics and Information Engineering, Anhui University, Hefei 230039, China
3 School of Chemistry and Chemical Engineering, Anhui University, Hefei 230039, China
4 School of Physics and Telecommunications Engineering, Shaanxi University of Technology, Hanzhong 723001, China
Abstract  

A general solution is obtained to a canonical problem of the reflection and refraction of an arbitrary shaped beam by using a uniaxially anisotropic chiral slab. The reflected, internal as well as refracted shaped beams are expanded in terms of cylindrical vector wave functions, and the expansion coefficients are determined by using the boundary conditions and method of moments procedure. As two typical examples, the normalized field intensity distributions are evaluated for a fundamental Gaussian beam and Hermite–Gaussian beam, and some propagation properties, especially the negative refraction phenomenon, are discussed briefly.

Keywords:  shaped beam      uniaxially anisotropic chiral slab      reflection and refraction      negative refraction phenomenon  
Received:  07 March 2020      Revised:  15 June 2020      Accepted manuscript online:  01 August 2020
Fund: the National Natural Science Foundation of China (Grant No. 61771385), the Science Foundation for Distinguished Young Scholars of Shaanxi Province, China (Grant No. 2020JC-42), the Fund from the Science and Technology on Solid-State Laser Laboratory, China (Grant No. 6142404180301), and the Science and Technology Research Plan of Xi’an City, China (Grant No. GXYD14.26).
Corresponding Authors:  Corresponding author. E-mail: wangmingjun@xaut.edu.cn   

Cite this article: 

Ming-Jun Wang(王明军), Jia-Lin Zhang(张佳琳), Hua-Yong Zhang(张华永), and Zi-Han Wang(王梓涵)$ Propagation of shaped beam through uniaxially anisotropic chiral slab 2020 Chin. Phys. B 29 114211

Fig. 1.  

Infinite UAC slab illuminated by EM beam.

Fig. 2.  

Normalized FIDs in xOz plane for UAC slab illuminated by ${{\rm{TEM}}}_{00}^{({x}^{^{\prime} })}$ mode Gaussian beam when w0 = 3λ, z0 = 0, β = π/3, d = 10λ0, εz = 2ε0, εt = ε0, μ = μ0, (a) κ = 0.4, (b) κ = 0.8, (c) κ = 1.6, (d) κ = 2.

Fig. 3.  

(a) Normalized FID in xOz plane for ${{\rm{TEM}}}_{10}^{({x}^{^{\prime} })}$ mode Hermite–Gaussian beam when w0 = 3λ, z0 = 0, β = π/4; (b) normalized FID in xOz plane for the same model as that in Fig. 2(d) when d = 10 λ0, εz = 2ε0, εt = ε0, μ = μ0, κ = 2, illuminated by the above Hermite–Gaussian beam; normalized FIDs for the above Hermite–Gaussian beam |Ei/E0|2 in (c) z = 0 plane, and for the transmitted beam |Et/E0|2 in (d) z = d plane.

[1]
Pendry J B 2004 Science 306 1353 DOI: 10.1126/science.1104467
[2]
Fedotov V A, Mladyonov P L, Prosvirnin S L, Rogacheva A V, Chen Y, Zheludev N I 2006 Phys. Rev. Lett. 97 167401 DOI: 10.1103/PhysRevLett.97.167401
[3]
Tang Y Q, Cohen A E 2010 Phys. Rev. Lett. 104 163901 DOI: 10.1103/PhysRevLett.104.163901
[4]
Klimov V V, Zabkov I V, Pavlov A A, Shiu R C, Chan H C, Guo G Y 2016 Opt. Express 24 6172 DOI: 10.1364/OE.24.006172
[5]
Yu S, Park H S, Piao X J, Min B, Park N 2016 Optica 3 1025 DOI: 10.1364/OPTICA.3.001025
[6]
Bayatpur F, Amirkhizi A V, Nemat-Nasser S 2012 IEEE Trans. Microwave Theory Tech. 60 1126 DOI: 10.1109/TMTT.2012.2184386
[7]
Uckun S 1998 Microwave Opt. Tech. Lett. 18 171 DOI: 10.1002/(ISSN)1098-2760
[8]
Cheng Q, Cui T J 2006 Phys. Rev. B 73 113104 DOI: 10.1103/PhysRevB.73.113104
[9]
Cheng Q, Cui T J 2006 J. Opt. Soc. Am. A 23 3203 DOI: 10.1364/JOSAA.23.003203
[10]
Dong J F, Li J 2012 Progress In Electromagnetics Research 127 389 DOI: 10.2528/PIER12031703
[11]
Zhang H Y, Huang Z X, Shi Y 2013 Opt. Express 21 15645 DOI: 10.1364/OE.21.015645
[12]
Wang M J, Zhang H Y, Liu G S, Li Y L, Dong Q F 2014 Opt. Express 22 3705 DOI: 10.1364/OE.22.003705
[13]
Stratton J A 1941 Electromagnetic Theory New York McGraw-Hill Companies Chap. VII
[14]
Tai C T 1971 Dyadic Green’s Functions in Electromagnetic Theory New York International Textbook Company Chap. 1
[15]
Davis L W 1979 Phys. Rev. A 19 1177 DOI: 10.1103/PhysRevA.19.1177
[16]
Barton J P, Alexander D R 1989 J. Appl. Phys. 66 2800 DOI: 10.1063/1.344207
[17]
Barton J P 1997 Appl. Opt. 36 1303 DOI: 10.1364/AO.36.001303
No related articles found!
No Suggested Reading articles found!