Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(11): 114302    DOI: 10.1088/1674-1056/aba27a
RAPID COMMUNICATION Prev   Next  

Acoustic radiation force and torque on a lossless eccentric layered fluid cylinder

F G Mitri
Santa Fe, NM 87508, USA
Abstract  

Exact analytical equations and computations for the longitudinal and transverse acoustic radiation force and axial torque components for a lossless eccentric liquid cylinder submerged in a nonviscous fluid and insonified by plane waves progressive waves (of arbitrary incidence in the polar plane) are established and computed numerically. The modal matching method and the translational addition theorem in cylindrical coordinates are used to derive exact mathematical expressions applicable to any inner and outer cylinder sizes without any approximations, and taking into account the interaction effects between the waves propagating in the layer and those scattered from the cylindrical core. The results show that longitudinal and transverse radiation force components arise, in addition to the emergence of an axial radiation torque component acting on the non-absorptive compound cylinder due to geometrical asymmetry as the eccentricity increases. The computations demonstrate that the axial torque component, which arises due to a geometrical asymmetry, can be positive (causing counter-clockwise rotation in the polar plane), negative (clockwise rotation) or neutral (rotation cancellation) depending on the size parameter of the cylinder and the amount of eccentricity. Furthermore, verification and validation of the results have been accomplished from the standpoint of energy conservation law applied to scattering, and based on the reciprocity theorem.

Keywords:  acoustic radiation force      acoustic radiation torque      non-viscous liquid eccentric cylinder  
Received:  26 May 2020      Revised:  24 June 2020      Accepted manuscript online:  01 January 1900
Corresponding Authors:  Corresponding author. E-mail: F.G.Mitri@ieee.org   

Cite this article: 

F G Mitri Acoustic radiation force and torque on a lossless eccentric layered fluid cylinder 2020 Chin. Phys. B 29 114302

Fig. 1.  

Graphical representation for the interaction of acoustical plane progressive waves (with arbitrary incidence in the polar plane) with an eccentric lossless fluid layered cylinder of arbitrary size. The rotating arrow denotes the axial radiation torque component generated with respect to center of mass of the compound cylinder of radius a, coating the one with radius b.

Fig. 2.  

Panels (a)–(d) display the two-dimensional plots versus (ka,α) of the dimensionless efficiencies Yx, Yy, τz, and Qext, respectively, for kd = 0, kb = 0.1.

Fig. 3.  

Panels (a)–(d) display the two-dimensional plots versus (ka,α) of the dimensionless efficiencies Yx, Yy, τz, and Qext, respectively, for kd = 2, kb = 0.1.

Fig. 4.  

Panels (a)–(d) display the two-dimensional plots versus (ka,α) of the dimensionless efficiencies Yx, Yy, τz, and Qext, respectively, for kd = 2, kb = 5.

[1]
Awatani J 1955 Mem. Inst. Scient. Indust. Res., Osaka University 12 95
[2]
Zhuk A P 1986 Int. Appl. Mech. 22 689
[3]
Wu J, Du G, Work S S, Warshaw D M 1990 J. Acoust. Soc. Am. 87 581 DOI: 10.1121/1.398927
[4]
Hasegawa T, Saka K, Inoue N, Matsuzawa K 1988 J. Acoust. Soc. Am. 83 1770 DOI: 10.1121/1.396511
[5]
Hasegawa T, Hino Y, Annou A, Noda H, Kato M, Inoue N 1993 J. Acoust. Soc. Am. 93 154 DOI: 10.1121/1.405653
[6]
Jamali J, Naei M H, Honarvar F, Rajabi M 2011 J. Mech. 27 227 DOI: 10.1017/jmech.2011.27
[7]
Mitri F G 2006 New J. Phys. 8 138 DOI: 10.1088/1367-2630/8/8/138
[8]
Mitri F G 2005 Eur. Phys. J. B 44 71 DOI: 10.1140/epjb/e2005-00101-0
[9]
Mitri F G 2005 J. Sound Vib. 284 494 DOI: 10.1016/j.jsv.2004.09.025
[10]
Mitri F G 2005 Ultrasonics 43 271 DOI: 10.1016/j.ultras.2004.07.001
[11]
Haydock D 2005 J. Phys. A: Math. Gen. 38 3279 DOI: 10.1088/0305-4470/38/15/004
[12]
Wang J T, Dual J 2009 J. Phys. A: Math. Theor. 42 285502 DOI: 10.1088/1751-8113/42/28/285502
[13]
Mitri F G 2015 Ultrasonics 62 244 DOI: 10.1016/j.ultras.2015.05.024
[14]
Mitri F G 2015 AIP Adv. 5 097205 DOI: 10.1063/1.4931916
[15]
Mitri F G 2016 Wave Motion 66 31 DOI: 10.1016/j.wavemoti.2016.05.005
[16]
Mitri F G 2017 Ultrasonics 73 236 DOI: 10.1016/j.ultras.2016.09.017
[17]
Mitri F G 2016 J. Appl. Phys. 120 104901 DOI: 10.1063/1.4962397
[18]
Gao S, Mao Y W, Liu J H, Liu X Z 2018 Chin. Phys. B 27 014302 DOI: 10.1088/1674-1056/27/1/014302
[19]
Roumeliotis J A, Kakogiannos N B 1995 J. Acoust. Soc. Am. 97 2074 DOI: 10.1121/1.412000
[20]
Danila E B, Conoir J M, Izbicki J L 1998 Acta Acust. United Ac. 84 38
[21]
Hasheminejad S M, Alibakhshi M A 2008 J. Zhejiang University-Sci. A 9 65 DOI: 10.1631/jzus.A072053
[22]
Hasheminejad S M, Kazemirad S 2008 J. Sound Vib. 318 506 DOI: 10.1016/j.jsv.2008.04.022
[23]
Hasheminejad S M, Kazemirad S 2008 Acta Acust. United Ac. 94 79 DOI: 10.3813/AAA.918011
[24]
Morse P M, Feshbach H 1953 Methods of theoretical physics 2 New York McGraw-Hill Book Co.
[25]
Ivanov E A 1970 Diffraction of electromagnetic waves on two bodies Minsk Nauka i Tekhnika Press NASA Technical Translation F-597
[26]
Mitri F G 2017 J. Appl. Phys. 121 144904 DOI: 10.1063/1.4980117
[27]
Mitri F G 2017 J. Phys. Commun. 1 055015 DOI: 10.1088/2399-6528/aa969d
[28]
Maidanik G 1958 J. Acoust. Soc. Am. 30 620 DOI: 10.1121/1.1909714
[29]
Wiscombe W J 1980 Appl. Optics 19 1505 DOI: 10.1364/AO.19.001505
[30]
Mitri F G 2015 Ultrasonics 62 20 DOI: 10.1016/j.ultras.2015.02.019
[31]
Varatharajulu V 1977 J. Math. Phys. 18 537 DOI: 10.1063/1.523335
[32]
Mitri F G 2017 J. Appl. Phys. 121 144901 DOI: 10.1063/1.4980009
[33]
Mitri F G 2016 Phys. Fluids 28 077104 DOI: 10.1063/1.4959071
[1] Acoustic radiation force on a rigid cylinder near rigid corner boundaries exerted by a Gaussian beam field
Qin Chang(常钦), Yuchen Zang(臧雨宸), Weijun Lin(林伟军), Chang Su(苏畅), and Pengfei Wu(吴鹏飞). Chin. Phys. B, 2022, 31(4): 044302.
[2] Axial acoustic radiation force on an elastic spherical shell near an impedance boundary for zero-order quasi-Bessel-Gauss beam
Yu-Chen Zang(臧雨宸), Wei-Jun Lin(林伟军), Chang Su(苏畅), and Peng-Fei Wu(吴鹏飞). Chin. Phys. B, 2021, 30(4): 044301.
[3] Weak-focused acoustic vortex generated by a focused ring array of planar transducers and its application in large-scale rotational object manipulation
Yuzhi Li(李禹志), Peixia Li(李培霞), Ning Ding(丁宁), Gepu Guo(郭各朴), Qingyu Ma(马青玉), Juan Tu(屠娟), and Dong Zhang(章东). Chin. Phys. B, 2021, 30(4): 044302.
[4] Pulling force of acoustic-vortex beams on centered elastic spheres based on the annular transducer model
Yuzhi Li(李禹志), Qingdong Wang(王青东), Gepu Guo(郭各朴), Hongyan Chu(褚红燕), Qingyu Ma(马青玉), Juan Tu(屠娟), Dong Zhang(章东). Chin. Phys. B, 2020, 29(5): 054302.
[5] Axial acoustic radiation force on a fluid sphere between two impedance boundaries for Gaussian beam
Yuchen Zang(臧雨宸), Yupei Qiao(乔玉配), Jiehui Liu(刘杰惠), Xiaozhou Liu(刘晓宙). Chin. Phys. B, 2019, 28(3): 034301.
[6] Acoustic radiation force on a multilayered sphere in a Gaussian standing field
Haibin Wang(汪海宾), Xiaozhou Liu(刘晓宙), Sha Gao(高莎), Jun Cui(崔骏), Jiehui Liu(刘杰惠), Aijun He(何爱军), Gutian Zhang(张古田). Chin. Phys. B, 2018, 27(3): 034302.
[7] Acoustic radiation force induced by two Airy-Gaussian beams on a cylindrical particle
Sha Gao(高莎), Yiwei Mao(毛一葳), Jiehui Liu(刘杰惠), Xiaozhou Liu(刘晓宙). Chin. Phys. B, 2018, 27(1): 014302.
No Suggested Reading articles found!