Special Issue:
SPECIAL TOPIC — Optical field manipulation
|
SPECIAL TOPIC—Optical field manipulation |
Prev
Next
|
|
|
Creation of topological vortices using Pancharatnam-Berry phase liquid crystal holographic plates |
Xuyue Guo(郭旭岳), Jinzhan Zhong(钟进展), Peng Li(李鹏), Bingyan Wei(魏冰妍), Sheng Liu(刘圣), Jianlin Zhao(赵建林) |
MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, and Shaanxi Key Laboratory of Optical Information Technology, School of Physical Science and Technology, Northwestern Polytechnical University, Xi'an 710129, China |
|
|
Abstract Recently, physical fields with topological configurations are evoking increasing attention due to their fascinating structures both in fundamental researches and practical applications. Therein, topological light fields, because of their unique opportunity of combining experimental and analytical studies, are attracting more interest. Here, based on the Pancharatnam-Berry (PB) phase, we report the creation of Hopf linked and Trefoil knotted optical vortices by using phase-only encoded liquid crystal (LC) holographic plates. Utilizing scanning measurement and the digital holographic interference method, we accurately locate the vortex singularities and map these topological nodal lines in three-dimensions. Compared with the common methods realized by the spatial light modulator (SLM), the phase-only LC plate is more efficient. Meanwhile, the smaller pixel size of the LC element reduces the imperfection induced by optical misalignment and pixellation. Moreover, we analyze the influence of the incident beam size on the topological configuration.
|
Received: 07 January 2020
Revised: 09 February 2020
Accepted manuscript online:
|
PACS:
|
03.65.Vf
|
(Phases: geometric; dynamic or topological)
|
|
42.79.Hp
|
(Optical processors, correlators, and modulators)
|
|
42.40.Eq
|
(Holographic optical elements; holographic gratings)
|
|
42.70.Df
|
(Liquid crystals)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11634010, 91850118, 11774289, 61675168, and 11804277), the National Key Research and Development Program of China (Grant No. 2017YFA0303800), the Joint Fund of the National Natural Science Foundation of China and the China Academy of Engineering Physics (Grant No. U1630125), and the Fundamental Research Funds for the Central Universities, China (Grant Nos. 3102018zy036, 3102019JC008, and 310201911cx022). |
Corresponding Authors:
Peng Li, Bingyan Wei
E-mail: pengli@nwpu.edu.cn;wbyxz@nwpu.edu.cn
|
Cite this article:
Xuyue Guo(郭旭岳), Jinzhan Zhong(钟进展), Peng Li(李鹏), Bingyan Wei(魏冰妍), Sheng Liu(刘圣), Jianlin Zhao(赵建林) Creation of topological vortices using Pancharatnam-Berry phase liquid crystal holographic plates 2020 Chin. Phys. B 29 040305
|
[1] |
Jack B, Leach J, Romero J, Franke-Arnold S, Ritsch-Marte M, Barnett S and Padgett M 2009 Phys. Rev. Lett. 103 083602
|
[2] |
Fürhapter S, Jesacher A, Bernet S and Ritsch-Marte M 2005 Opt. Express 13 689
|
[3] |
Friese M, Nieminen T, Heckenberg N and Rubinsztein-Dunlop H 1998 Nature 394 348
|
[4] |
Zhao J, Chremmos I D, Song D, Christodoulides D N, Efremidis N K and Chen Z 2015 Sci. Rep. 5 12086
|
[5] |
Chen P, Ge S J, Duan W, Wei B Y, Cui G X, Hu W and Lu Y Q 2017 ACS Photon. 4 1333
|
[6] |
Zhao Y and Wang J 2015 Opt. Lett. 40 4843
|
[7] |
Chen P, Ma L L, Duan W, Chen J, Ge S J, Zhu Z H, Tang M J, Xu R, Gao W and Li T 2018 Adv. Mater. 30 1705865
|
[8] |
Li P, Wu D, Liu S, Zhang Y, Guo X, Qi S, Li Y and Zhao J 2018 Chin. Phys. B 27 114201
|
[9] |
Han L, Liu S, Li P, Zhang Y, Cheng H and Zhao J 2018 Phys. Rev. A 97 053802
|
[10] |
Zhang D, Cao X, Yang H, Gao J and Lv S 2019 Chin. Phys. B 28 034204
|
[11] |
Dennis M R, King R P, Jack B, O'Holleran K and Padgett M J 2010 Nat. Phys. 6 118
|
[12] |
Irvine W T and Bouwmeester D 2008 Nat. Phys. 4 716
|
[13] |
Rañada A F 1989 Lett. Math. Phys. 18 97
|
[14] |
Sugic D and Dennis M R 2018 J. Opt. Soc. Am. A 35 1987
|
[15] |
Guo X, Li P, Zhong J, Liu S, Wei B, Zhu W, Qi S, Cheng H and Zhao J 2020 Laser Photon. Rev.
|
[16] |
Lord K 1867 Philos. Mag. 34 15
|
[17] |
Berger M A 1999 Plasma Phys. Contr. F. 41 B167
|
[18] |
Witten E 1989 Commun. Math. Phys. 121 351
|
[19] |
Moffatt H 1981 J. Fluid. Mech. 106 27
|
[20] |
Ricca R L and Berger M A 1996 Phys. Today 49 28
|
[21] |
Chen B G, Ackerman P J, Alexander G P, Kamien R D and Smalyukh I I 2013 Phys. Rev. Lett. 110 237801
|
[22] |
Machon T and Alexander G P 2014 Phys. Rev. Lett. 113 027801
|
[23] |
Berry M V and Dennis M R 2001 Proc. R. Soc. A 457 2251
|
[24] |
Leach J, Dennis M R, Courtial J and Padgett M J 2004 Nature 432 165
|
[25] |
Leach J, Dennis M R, Courtial J and Padgett M J 2005 New J. Phys. 7 55
|
[26] |
Dutton Z and Ruostekoski J 2004 Phys. Rev. Lett. 93 193602
|
[27] |
Ruostekoski J and Anglin J 2001 Phys. Rev. Lett. 86 3934
|
[28] |
Wang L, Xiao R W, Ge S J, Shen Z X, Lü P, Hu W and Lu Y Q 2019 Acta Phys. Sin. 68 084205 (in Chinese)
|
[29] |
Zhou H, Li Z K, Wang H Y, Chen H W, Peng X H and Du J F 2016 Chin. Phys. Lett. 33 060301
|
[30] |
Liu J A, Tu J L, Lu Z L, Wu B W, Hu Q, Ma H H, Chen H and Yi X N 2019 Acta Phys. Sin. 68 064201 (in Chinese)
|
[31] |
Davis J A, Cottrell D M, Campos J, Yzuel M J and Moreno I 1999 Appl. Opt. 38 5004
|
[32] |
Wei B Y, Liu S, Chen P, Qi S X, Zhang Y, Hu W, Lu Y Q and Zhao J L 2018 Appl. Phys. Lett. 112 121101
|
[33] |
Wang L, Ge S, Chen Z, Hu W and Lu Y 2016 Chin. Phys. B 25 094222
|
[34] |
Chen P, Wei B Y, Ji W, Ge S J, Hu W, Xu F, Chigrinov V and Lu Y Q 2015 Photon. Res. 3 133
|
[35] |
Wei B Y, Chen P, Hu W, Ji W, Zheng L Y, Ge S J, Ming Y, Chigrinov V and Lu Y Q 2015 Sci. Rep. 5 17484
|
[36] |
Chen P, Wei B Y, Hu W and Lu Y Q 2019 Adv. Mater. 31 1903665
|
[37] |
Wei B Y, Hu W, Ming Y, Xu F, Rubin S, Wang J G, Chigrinov V and Lu Y Q 2014 Adv. Mater. 26 1590
|
[38] |
Chen P, Ma L L, Hu W, Shen Z X, Bisoyi H K, Wu S B, Ge S J, Li Q and Lu Y Q 2019 Nat. Commun. 10 2518
|
[39] |
Liu S, Han L, Li P, Zhang Y, Cheng H and Zhao J 2017 Appl. Phys. Lett. 110 171112
|
[40] |
Zhong J, Qi S, Liu S, Li P, Wei B, Guo X, Cheng H and Zhao J 2019 Opt. Lett. 44 3849
|
[41] |
Maucher F, Gardiner S and Hughes I 2016 New J. Phys. 18 063016
|
[42] |
Li P, Fan X, Wu D, Liu S, Li Y and Zhao J 2020 Photon. Res.
|
[43] |
Freund I 1999 Opt. Commun. 163 230
|
[44] |
Siegman A E 1986 Lasers (Mill Valley: University Science Books)
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|