|
|
Efficient scheme for remote preparation of arbitrary n-qubit equatorial states |
Xin-Wei Zha(查新未), Min-Rui Wang(王敏锐), Ruo-Xu Jiang(姜若虚) |
School of Science, Xi'an University of Posts and Telecommunications, Xi'an 710121, China |
|
|
Abstract Recently, a scheme for deterministic remote preparation of arbitrary multi-qubit equatorial states was proposed by Wei et al. [Quantum Inf. Process. 17 70 (2018)]. It is worth mentioning that the construction of mutual orthogonal measurement basis plays a key role in quantum remote state preparation. In this paper, a simple and feasible remote preparation of arbitrary n-qubit equatorial states scheme is proposed. In our scheme, the success probability will reach unit. Moreover, there are no coefficient constraint and auxiliary qubits in this scheme. It means that the success probabilities are independent of the coefficients of the entangled channel. The advantage of our scheme is that the mutual orthogonal measurement basis is devised. To accomplish the quantum remote state preparation (RSP) schemes, some new sets of mutually orthogonal measurement basis are introduced.
|
Received: 04 November 2019
Revised: 22 January 2020
Accepted manuscript online:
|
PACS:
|
03.67.Hk
|
(Quantum communication)
|
|
03.65.Ud
|
(Entanglement and quantum nonlocality)
|
|
Corresponding Authors:
Min-Rui Wang
E-mail: 503989460@qq.com
|
Cite this article:
Xin-Wei Zha(查新未), Min-Rui Wang(王敏锐), Ruo-Xu Jiang(姜若虚) Efficient scheme for remote preparation of arbitrary n-qubit equatorial states 2020 Chin. Phys. B 29 040304
|
[1] |
Li C B, Jiang Z H, Zhang Y Q, Zhang Z Y, Wen F, Chen H X, Zhang Y P and Xiao M 2017 Phys. Rev. Appl. 7 014023
|
[2] |
Zhang D, Li C B, Zhang Z Y, Zhang Y Q, Zhang Y P and Xiao M 2017 Phys. Rev. A 96 043847
|
[3] |
Chen H X, Zhang X, Zhu D Y, Yang C, Jiang T, Zheng H B and Zhang Y P 2014 Phys. Rev. A 90 043846
|
[4] |
Li X H, Zhang D, Zhang D, Hao L, Chen H X, Wang Z G and Zhang Y P 2018 Phys. Rev. A 97 053830
|
[5] |
Bennett C H, Brassard G, Crepeau C, Jozsa R, Peres A and Wootters W K 1993 Phys. Rev. Lett. 70 1895
|
[6] |
Li Y H, Li X L, Nie L P and Sang M H 2016 Int. J. Theor. Phys. 55 1820
|
[7] |
Cardoso W B, Avelar A T, Baseia B and Almeida N G D 2005 Phys. Rev. A 72 045802
|
[8] |
Bouwmeester D, Pan J W and Mattle K 1997 Nature 39 575
|
[9] |
Xiao X, Yao Y, Zhong W J, Li Y L and Xie Y M 2016 Phys. Rev. A 93 012307
|
[10] |
Dai H Y, Chen P X and Li C Z 2003 Chin. Phys. 12 1354
|
[11] |
Dai H Y, Li C Z and Chen P X 2003 Chin. Phys. Lett. 20 1196
|
[12] |
Wei J H, Qi B, Dai H Y, Huang J H and Zhang M 2015 IET Control Theory Appl. 9 2500
|
[13] |
Lo H K 2000 Phys. Rev. A 62 012313
|
[14] |
Bennett C H, DiVincenzo D P, Shor P W, Smolin J A, Terhal B M and Wootters W K 2001 Phys. Rev. Lett. 87 077902
|
[15] |
Pati A K 2001 Phys. Rev. A 63 014302
|
[16] |
Ma S Y, Chen X B, Luo M X, Zhang R and Yang Y X 2010 Opt. Commun. 284 4088
|
[17] |
Hou K, Yu J Y and Yan F 2015 Int. J. Theor. Phys. 54 3092
|
[18] |
Berry D W and Sanders B C 2003 Phys. Rev. Lett. 90 057901
|
[19] |
Dai H Y, Chen P X, Zhang M and Li C Z 2008 Chin. Phys. B 17 27
|
[20] |
Zeng B and Zhang P 2002 Phys. Rev. A 65 022316
|
[21] |
Ye M Y, Zhang Y S and Guo G C 2004 Phys. Rev. A 69 022310
|
[22] |
Liu J M, Feng X L and Oh C H 2009 Europhys. Lett. 87 30006
|
[23] |
Ma P C and Zhan Y B 2008 Chin. Phys. B 17 445
|
[24] |
Zhan Y B 2012 Europhys. Lett. 98 40005
|
[25] |
Xiang G Y, Li J, Yu B and Guo G C 2005 Phys. Rev. A 72 012315
|
[26] |
Peng X H, Zhu X W, Fang X M, Feng M, Liu M L and Gao K L 2003 Phys. Lett. A 306 271
|
[27] |
Yang Y G, Wen Q Y and Zhu F C 2007 Chin. Phys. B 16 910
|
[28] |
Long G L and Liu X S 2002 Phys. Rev. A 65 032302
|
[29] |
Li X H, Deng F G and Zhou H Y 2008 Phys. Rev. A 78 022321
|
[30] |
Wang C, Zeng Z and Li X H 2015 Quantum Inf. Process. 14 1077
|
[31] |
Liu L L and Hwang T 2014 Quantum Inf. Process. 13 1639
|
[32] |
Huang L and Zhao H X 2017 Int. J. Theor. Phys. 56 678
|
[33] |
Song J F and Wang Z Y 2011 Int. J. Theor. Phys. 50 2410
|
[34] |
Dong T and Ma S Y 2018 Int. J. Theor. Phys. 57 3563
|
[35] |
Wang Z Y 2011 Commun. Theor. Phys. 55 244
|
[36] |
Hou K, Wang J, Yuan H and Shi S H 2009 Commun. Theor. Phys. 52 848
|
[37] |
Liu L L and Hwang T 2014 Quantum Inf. Process. 13 1639
|
[38] |
Wang D and Ye L 2012 Int. J. Theor. Phys. 51 3376
|
[39] |
Wu N N and Jiang M 2018 Quantum Inf. Process. 7 1
|
[40] |
Chen Q Q, Xia Y, Song J and An N B 2010 Phys. Lett. A 374 4483
|
[41] |
Xiao X Q, Liu J M and Zeng G 2011 J. Phys. B: At. Mol. Opt. Phys. 44 075501
|
[42] |
Hou K, Wang J, Lu Y L and Shi S H 2009 Int. J. Theor. Phys. 48 2005
|
[43] |
Chang L W, Zheng S H, Gu L Z, Xiao D and Yang Y X 2014 Chin. Phys. B 23 090307
|
[44] |
Zhou P 2012 J. Phys. A: Math. Theor. 45 215305
|
[45] |
Hou K, Li Y B, Liu G H and Sheng S Q 2011 J. Phys. A: Math. Theor. 44 255304
|
[46] |
Zhan Y B, Zhang Q Y and Shi J 2010 Chin. Phys. B 19 080310
|
[47] |
Zhang Z H, Shu L, Mo Z W, Zheng J, Ma S Y and Luo M X 2014 Quantum Inf. Process. 13 1979
|
[48] |
Luo M X, Chen X B, Yang Y X and Niu X X 2012 Quantum Inf. Process. 11 751
|
[49] |
Cao T B and Nguyen B A 2013 Adv. Nat. Sci.: Nanosci. Nanotechnol. 5 015003
|
[50] |
Peng J Y, Bai M Q and Mo Z W 2015 Quantum Inf. Process. 14 4263
|
[51] |
Wang X Y and Mo Z W 2017 Int. J. Theor. Phys. 56 1052
|
[52] |
Ma P C, Chen G B, Li X W and Zhan Y B 2017 Quantum Inf. Process. 16 308
|
[53] |
Sun Y R, Chen Y L, Ahmad H and Wei Z H 2019 CMC- Computers, Materials & Continua 59 215
|
[54] |
Wang D and Ye L 2013 Quantum Inf. Process. 12 3223
|
[55] |
Lv S X, Zhao Z W and Zhou P 2018 Int. J. Theor. Phys. 57 148
|
[56] |
An N B and Bich C T 2014 Phys. Lett. A 378 3582
|
[57] |
Chen Q Q, Xia Y and Song J 2011 Opt. Commun. 284 5031
|
[58] |
Choudhury B S and Dhara 2015 Quantum Inf. Process. 14 373
|
[59] |
Li X H and Ghose S 2015 Quantum Inf. Process. 14 4585
|
[60] |
Wei J H, Shi L, Zhu Y, Xue Y, Xu Z Y and Jiang J 2018 Quantum Inf. Process. 17 70
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|