Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(4): 040304    DOI: 10.1088/1674-1056/ab773d
GENERAL Prev   Next  

Efficient scheme for remote preparation of arbitrary n-qubit equatorial states

Xin-Wei Zha(查新未), Min-Rui Wang(王敏锐), Ruo-Xu Jiang(姜若虚)
School of Science, Xi'an University of Posts and Telecommunications, Xi'an 710121, China
Abstract  Recently, a scheme for deterministic remote preparation of arbitrary multi-qubit equatorial states was proposed by Wei et al. [Quantum Inf. Process. 17 70 (2018)]. It is worth mentioning that the construction of mutual orthogonal measurement basis plays a key role in quantum remote state preparation. In this paper, a simple and feasible remote preparation of arbitrary n-qubit equatorial states scheme is proposed. In our scheme, the success probability will reach unit. Moreover, there are no coefficient constraint and auxiliary qubits in this scheme. It means that the success probabilities are independent of the coefficients of the entangled channel. The advantage of our scheme is that the mutual orthogonal measurement basis is devised. To accomplish the quantum remote state preparation (RSP) schemes, some new sets of mutually orthogonal measurement basis are introduced.
Keywords:  mutual orthogonal measurement basis      remote state preparation      equatorial states      success probability  
Received:  04 November 2019      Revised:  22 January 2020      Accepted manuscript online: 
PACS:  03.67.Hk (Quantum communication)  
  03.65.Ud (Entanglement and quantum nonlocality)  
Corresponding Authors:  Min-Rui Wang     E-mail:  503989460@qq.com

Cite this article: 

Xin-Wei Zha(查新未), Min-Rui Wang(王敏锐), Ruo-Xu Jiang(姜若虚) Efficient scheme for remote preparation of arbitrary n-qubit equatorial states 2020 Chin. Phys. B 29 040304

[1] Li C B, Jiang Z H, Zhang Y Q, Zhang Z Y, Wen F, Chen H X, Zhang Y P and Xiao M 2017 Phys. Rev. Appl. 7 014023
[2] Zhang D, Li C B, Zhang Z Y, Zhang Y Q, Zhang Y P and Xiao M 2017 Phys. Rev. A 96 043847
[3] Chen H X, Zhang X, Zhu D Y, Yang C, Jiang T, Zheng H B and Zhang Y P 2014 Phys. Rev. A 90 043846
[4] Li X H, Zhang D, Zhang D, Hao L, Chen H X, Wang Z G and Zhang Y P 2018 Phys. Rev. A 97 053830
[5] Bennett C H, Brassard G, Crepeau C, Jozsa R, Peres A and Wootters W K 1993 Phys. Rev. Lett. 70 1895
[6] Li Y H, Li X L, Nie L P and Sang M H 2016 Int. J. Theor. Phys. 55 1820
[7] Cardoso W B, Avelar A T, Baseia B and Almeida N G D 2005 Phys. Rev. A 72 045802
[8] Bouwmeester D, Pan J W and Mattle K 1997 Nature 39 575
[9] Xiao X, Yao Y, Zhong W J, Li Y L and Xie Y M 2016 Phys. Rev. A 93 012307
[10] Dai H Y, Chen P X and Li C Z 2003 Chin. Phys. 12 1354
[11] Dai H Y, Li C Z and Chen P X 2003 Chin. Phys. Lett. 20 1196
[12] Wei J H, Qi B, Dai H Y, Huang J H and Zhang M 2015 IET Control Theory Appl. 9 2500
[13] Lo H K 2000 Phys. Rev. A 62 012313
[14] Bennett C H, DiVincenzo D P, Shor P W, Smolin J A, Terhal B M and Wootters W K 2001 Phys. Rev. Lett. 87 077902
[15] Pati A K 2001 Phys. Rev. A 63 014302
[16] Ma S Y, Chen X B, Luo M X, Zhang R and Yang Y X 2010 Opt. Commun. 284 4088
[17] Hou K, Yu J Y and Yan F 2015 Int. J. Theor. Phys. 54 3092
[18] Berry D W and Sanders B C 2003 Phys. Rev. Lett. 90 057901
[19] Dai H Y, Chen P X, Zhang M and Li C Z 2008 Chin. Phys. B 17 27
[20] Zeng B and Zhang P 2002 Phys. Rev. A 65 022316
[21] Ye M Y, Zhang Y S and Guo G C 2004 Phys. Rev. A 69 022310
[22] Liu J M, Feng X L and Oh C H 2009 Europhys. Lett. 87 30006
[23] Ma P C and Zhan Y B 2008 Chin. Phys. B 17 445
[24] Zhan Y B 2012 Europhys. Lett. 98 40005
[25] Xiang G Y, Li J, Yu B and Guo G C 2005 Phys. Rev. A 72 012315
[26] Peng X H, Zhu X W, Fang X M, Feng M, Liu M L and Gao K L 2003 Phys. Lett. A 306 271
[27] Yang Y G, Wen Q Y and Zhu F C 2007 Chin. Phys. B 16 910
[28] Long G L and Liu X S 2002 Phys. Rev. A 65 032302
[29] Li X H, Deng F G and Zhou H Y 2008 Phys. Rev. A 78 022321
[30] Wang C, Zeng Z and Li X H 2015 Quantum Inf. Process. 14 1077
[31] Liu L L and Hwang T 2014 Quantum Inf. Process. 13 1639
[32] Huang L and Zhao H X 2017 Int. J. Theor. Phys. 56 678
[33] Song J F and Wang Z Y 2011 Int. J. Theor. Phys. 50 2410
[34] Dong T and Ma S Y 2018 Int. J. Theor. Phys. 57 3563
[35] Wang Z Y 2011 Commun. Theor. Phys. 55 244
[36] Hou K, Wang J, Yuan H and Shi S H 2009 Commun. Theor. Phys. 52 848
[37] Liu L L and Hwang T 2014 Quantum Inf. Process. 13 1639
[38] Wang D and Ye L 2012 Int. J. Theor. Phys. 51 3376
[39] Wu N N and Jiang M 2018 Quantum Inf. Process. 7 1
[40] Chen Q Q, Xia Y, Song J and An N B 2010 Phys. Lett. A 374 4483
[41] Xiao X Q, Liu J M and Zeng G 2011 J. Phys. B: At. Mol. Opt. Phys. 44 075501
[42] Hou K, Wang J, Lu Y L and Shi S H 2009 Int. J. Theor. Phys. 48 2005
[43] Chang L W, Zheng S H, Gu L Z, Xiao D and Yang Y X 2014 Chin. Phys. B 23 090307
[44] Zhou P 2012 J. Phys. A: Math. Theor. 45 215305
[45] Hou K, Li Y B, Liu G H and Sheng S Q 2011 J. Phys. A: Math. Theor. 44 255304
[46] Zhan Y B, Zhang Q Y and Shi J 2010 Chin. Phys. B 19 080310
[47] Zhang Z H, Shu L, Mo Z W, Zheng J, Ma S Y and Luo M X 2014 Quantum Inf. Process. 13 1979
[48] Luo M X, Chen X B, Yang Y X and Niu X X 2012 Quantum Inf. Process. 11 751
[49] Cao T B and Nguyen B A 2013 Adv. Nat. Sci.: Nanosci. Nanotechnol. 5 015003
[50] Peng J Y, Bai M Q and Mo Z W 2015 Quantum Inf. Process. 14 4263
[51] Wang X Y and Mo Z W 2017 Int. J. Theor. Phys. 56 1052
[52] Ma P C, Chen G B, Li X W and Zhan Y B 2017 Quantum Inf. Process. 16 308
[53] Sun Y R, Chen Y L, Ahmad H and Wei Z H 2019 CMC- Computers, Materials & Continua 59 215
[54] Wang D and Ye L 2013 Quantum Inf. Process. 12 3223
[55] Lv S X, Zhao Z W and Zhou P 2018 Int. J. Theor. Phys. 57 148
[56] An N B and Bich C T 2014 Phys. Lett. A 378 3582
[57] Chen Q Q, Xia Y and Song J 2011 Opt. Commun. 284 5031
[58] Choudhury B S and Dhara 2015 Quantum Inf. Process. 14 373
[59] Li X H and Ghose S 2015 Quantum Inf. Process. 14 4585
[60] Wei J H, Shi L, Zhu Y, Xue Y, Xu Z Y and Jiang J 2018 Quantum Inf. Process. 17 70
[1] Deterministic remote state preparation of arbitrary three-qubit state through noisy cluster-GHZ channel
Zhihang Xu(许智航), Yuzhen Wei(魏玉震), Cong Jiang(江聪), and Min Jiang(姜敏). Chin. Phys. B, 2022, 31(4): 040304.
[2] Quantum multicast schemes of different quantum states via non-maximally entangled channels with multiparty involvement
Yan Yu(于妍), Nan Zhao(赵楠), Chang-Xing Pei(裴昌幸), and Wei Li(李玮). Chin. Phys. B, 2021, 30(9): 090302.
[3] Effects of initial states on the quantum correlations in the generalized Grover search algorithm
Zhen-Yu Chen(陈祯羽), Tian-Hui Qiu(邱田会), Wen-Bin Zhang(张文彬), and Hong-Yang Ma(马鸿洋). Chin. Phys. B, 2021, 30(8): 080303.
[4] Deterministic hierarchical joint remote state preparation with six-particle partially entangled state
Na Chen(陈娜), Bin Yan(颜斌), Geng Chen(陈赓), Man-Jun Zhang(张曼君), Chang-Xing Pei(裴昌幸). Chin. Phys. B, 2018, 27(9): 090304.
[5] Controllable all-optical stochastic logic gates and their delay storages based on the cascaded VCSELs with optical-injection
Dongzhou Zhong(钟东洲), Wei Luo(罗伟), Geliang Xu(许葛亮). Chin. Phys. B, 2016, 25(9): 094202.
[6] Controlled remote preparation of an arbitrary four-qubit cluster-type state
Wei-Lin Chen(陈维林), Song-Ya Ma(马松雅), Zhi-Guo Qu(瞿治国). Chin. Phys. B, 2016, 25(10): 100304.
[7] Deterministic joint remote state preparation of arbitrary single- and two-qubit states
Chen Na (陈娜), Quan Dong-Xiao (权东晓), Xu Fu-Fang (徐馥芳), Yang Hong (杨宏), Pei Chang-Xing (裴昌幸). Chin. Phys. B, 2015, 24(10): 100307.
[8] Joint remote preparation of an arbitrary five-qubit Brown state via non-maximally entangled channels
Chang Li-Wei (常利伟), Zheng Shi-Hui (郑世慧), Gu Li-Ze (谷利泽), Xiao Da (肖达), Yang Yi-Xian (杨义先). Chin. Phys. B, 2014, 23(9): 090307.
[9] Efficient remote preparation of arbitrary two-and three-qubit states via the χ state
Ma Song-Ya (马松雅), Luo Ming-Xing (罗明星). Chin. Phys. B, 2014, 23(9): 090308.
[10] Deterministic joint remote preparation of an arbitrary two-qubit state in the presence of noise
Chen Zhong-Fang (陈忠芳), Liu Jin-Ming (刘金明), Ma Lei (马雷). Chin. Phys. B, 2014, 23(2): 020312.
[11] Deterministic joint remote state preparation of arbitrary two- and three-qubit states
Wang Yuan (王媛), Ji Xin (计新). Chin. Phys. B, 2013, 22(2): 020306.
[12] Probabilistic remote preparation of a high-dimensional equatorial multiqubit with four-party and classical communication cost
Dai Hong-Yi(戴宏毅), Zhang Ming(张明), Chen Ju-Mei(陈菊梅), and Li Cheng-Zu(李承祖). Chin. Phys. B, 2011, 20(5): 050310.
[13] Scheme for implementing perfect remote state preparation with W-class state in cavity QED
Wang Xue-Wen(王学文) and Peng Zhao-Hui(彭朝晖). Chin. Phys. B, 2008, 17(7): 2346-2351.
[14] Scheme for probabilistic remotely preparing a multi-particle entangled GHZ state
Ma Peng-Cheng(马鹏程) and Zhan You-Bang(詹佑邦). Chin. Phys. B, 2008, 17(2): 445-450.
[15] High efficient scheme for remote state preparation with cavity QED
Deng Li(邓黎), Chen Ai-Xi(陈爱喜), and Xu Yan-Qiu(徐彦秋). Chin. Phys. B, 2008, 17(10): 3725-3728.
No Suggested Reading articles found!