Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(7): 074201    DOI: 10.1088/1674-1056/28/7/074201
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Design of an augmented reality display based on polarization grating

Renjie Xia(夏人杰), Changshun Wang(王长顺), Yujia Pan(潘雨佳), Tianyu Chen(陈天宇), Ziyao Lyu(吕子瑶), Lili Sun(孙丽丽)
State Key Laboratory of Advanced Optical Communication Systems and Networks, School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China
Abstract  

A new optical system for an augmented reality (AR) display is proposed in this paper. The optical system mainly includes a ray deflector, coupling input grating, optical waveguide, and coupling output grating. Both the ray deflector and the coupling input grating are designed based on the diffraction characteristics of the polarization grating, and the coupling output grating is the Bragg reflection grating. Compared with other AR schemes, this AR optical system not only reduces the number of projections from two to one, but also improves the efficiency of light coupling into the optical waveguides. The energy loss is reduced by utilizing the single-order diffraction characteristics of the polarization grating in its coupling input structure. The light deflector uses the polarization selectivity of the polarization grating and the characteristics of the rotating light of the twisted nematic liquid crystal layer to realize beam deflection. The working principle of the optical system is experimentally and theoretically demonstrated.

Keywords:  augmented reality      polarization grating      azo liquid crystal  
Received:  27 January 2019      Revised:  03 April 2019      Accepted manuscript online: 
PACS:  42.40.Eq (Holographic optical elements; holographic gratings)  
  42.40.Ht (Hologram recording and readout methods)  
  42.40.My (Applications)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant No. 11574211).

Corresponding Authors:  Changshun Wang     E-mail:  cswang@sjtu.edu.cn

Cite this article: 

Renjie Xia(夏人杰), Changshun Wang(王长顺), Yujia Pan(潘雨佳), Tianyu Chen(陈天宇), Ziyao Lyu(吕子瑶), Lili Sun(孙丽丽) Design of an augmented reality display based on polarization grating 2019 Chin. Phys. B 28 074201

[34] Abrahamyan V K 2015 J. Contemp. Phys. 50 240
[1] Hu X D and Hua H 2015 Appl. Opt. 54 9990
[35] Shishido A, Tsutsumi O, Kanazawa A, Shiono T, Ikeda T and Tamai N 1997 J. Am. Chem. Soc. 119 7791
[2] Liu S X, Li Y, Zhou P C, Chen Q M, Li S D, Liu Y D, Wang Y F and Su Y K 2018 J. Soc. Inf. Disp. 26 687
[36] Aristov A K, Novosel’skii V V, Semenov G B, Shchedrunova T V, Sohn H K and Yu M B 2003 J. Opt. Technol. 70 480
[3] Yoshida T, Tokuyama K, Takai Y, Tsukuda D, Kaneko T, Suzuki N, Anzai T, Yoshikaie A, Akutsu K and Machida A 2018 SID Symp. Dig. Tech. Pap. 49 200
[4] Lee S, Jang C W, Moon S, Cho J and Lee B 2016 ACM Trans. Graph. 35 60
[5] Maimone A, Lanman D, Rathinavel K, Keller K, Luebke D and Fuchs H 2014 ACM Trans. Graph. 33 89
[6] Wu H K, Lee S W Y, Chang H Y and Liang J C 2013 Comput. & Educ. 62 41
[7] Nicolau S, Soler L, Mutter D and Marescaux J 2011 Surg. Oncol. 20 189
[8] Wang Y and Samaras D 2003 Graph. Models 65 185
[9] Hong K, Yeom J, 1 Jang C W, Hong J and Lee B 2014 Opt. Lett. 39 127
[10] Zhan T, Lee Y H and Wu S T 2018 Opt. Express 26 4863
[11] Su Y F, Cai Z J, Liu Q, Shi L Y, Zhou F, Huang S S, Guo P L and Wu J H 2018 Opt. Commun. 428 216
[12] Su Y F, Cai Z J, Liu Q, Guo P L, Lu Y F and Shi L Y 2017 Optik 149 239
[13] Zheng Z R, Liu X, Li H F and Xu L 2010 Appl. Opt. 49 3661
[14] Yun-Han L E E, Tao Z H A N and Shin-Tson W U 2019 Virtual Reality & Intell. Hardware 1 10
[15] Chen H W, Weng Y S, Xu D M, Tabiryan V and Shin-Tson Wu 2016 Opt. Express 24 7287
[16] Yu C, Peng Y F, Zhao Q, L I H and Liu X 2017 Appl. Opt. 56 9390
[17] Wang Z, Dai P, Lv G Q and Feng Q B 2018 IEEE Photon. J. 10 1109
[18] Liu Y Z, Pang X N, Jiang S J and Dong J W 2013 Opt. Express 21 12068
[19] Liu S X, Li Y, Zhou P C, Chen Q M and Y K S U 2018 Opt. Express 26 3394
[20] Liu S Q, Sun P, Wang C and Zheng Z R 2017 Opt. Commun. 403 376
[21] Wang Q F, Cheng D W, Wang Y T, Hua H and Jin G F 2013 Appl. Opt. 52 C88
[22] Gao Q K, Liu J, Duan X H, Zhao T, Li X and Liu P L 2017 Opt. Express 25 8412
[23] Kim S K, Kim E H and Kim D W 2011 Opt. Eng. 50 114001
[24] Lee Y H, Tan G, Yin K, Zhan T and Wu S T 2018 J. Soc. Inf. Disp. 26 64
[25] Zeng Y, Pan Z H, Zhao F L, Qin M, Zhou Y and Wang C S 2014 Chin. Phys. B 23 024212
[26] Nikolova L and Todorov T 1984 Opt. Acta 31 579
[27] Todorov T, Nikolov L and Tomova N 1984 Appl. Optics 23 4588
[28] Todorov T, Nikolova L, Stoyanova K and Tomova N 1985 Appl. Opt. 24 785
[29] Sutherl R L 2002 J. Opt. Soc. Am. B 19 2995
[30] Crawford G P, Eakin J N, Radcliffe M D, Callan-Jones A and Pelcovits R A 2005 J. Appl. Phys. 98 123102
[31] Nedelchev L, Ivanov D, Berberova N, Strijkova V and Nazarova D 2018 Opt. Quantum Electron. 50 212
[32] Tabiryan V, Nersisyan R, Steeves M and Kimball R 2010 Opt. Photon. News 21 40
[33] Lu W Q, Chen G Y, Hao Z F, Xu J J, Tian J G and Zhang C P 2010 Chin. Phys. B 19 084208
[34] Abrahamyan V K 2015 J. Contemp. Phys. 50 240
[35] Shishido A, Tsutsumi O, Kanazawa A, Shiono T, Ikeda T and Tamai N 1997 J. Am. Chem. Soc. 119 7791
[36] Aristov A K, Novosel’skii V V, Semenov G B, Shchedrunova T V, Sohn H K and Yu M B 2003 J. Opt. Technol. 70 480
[1] Creation of topological vortices using Pancharatnam-Berry phase liquid crystal holographic plates
Xuyue Guo(郭旭岳), Jinzhan Zhong(钟进展), Peng Li(李鹏), Bingyan Wei(魏冰妍), Sheng Liu(刘圣), Jianlin Zhao(赵建林). Chin. Phys. B, 2020, 29(4): 040305.
[2] Dynamic shaping of vectorial optical fields based on two-dimensional blazed holographic grating
Xinyi Wang(王心怡), Yuan Gao(高源), Zhaozhong Chen(陈召忠), Jianping Ding(丁剑平), Hui-Tian Wang(王慧田). Chin. Phys. B, 2020, 29(1): 014208.
[3] A rapid and convenient experimental method of absolutely calibrating transmission of x-ray flat-response filter
Jian Yu(余建), Li-Fei Hou(候立飞), Jing Wang(王静), Wen-Hai Zhang(张文海), Ming Chen(陈铭), Bao-Chong Zhou(周保充), Sha-Li Xiao(肖沙里), Shen-Ye Liu(刘慎业). Chin. Phys. B, 2018, 27(10): 100702.
[4] Asymmetric dynamic phase holographic grating in nematic liquid crystal
Chang-Yu Ren(任常愚), Hong-Xin Shi(石宏新), Yan-Bao Ai(艾延宝), Xiang-Bao Yin(尹向宝), Feng Wang(王丰), Hong-Wei Ding(丁红伟). Chin. Phys. B, 2016, 25(9): 094218.
[5] Electrically tunable holographic polymer templated blue phase liquid crystal grating
He Zheng-Hong (何正红), Chen Chao-Ping (陈超平), Zhu Ji-Liang (朱吉亮), Yuan Ya-Chao (袁亚超), Li Yan (李燕), Hu Wei (胡伟), Li Xiao (李潇), Li Hong-Jing (李洪婧), Lu Jian-Gang (陆建刚), Su Yi-Kai (苏翼凯). Chin. Phys. B, 2015, 24(6): 064203.
[6] Generalization and propagation of spiraling Bessel beams with a helical axicon
Sun Qiong-Ge(孙琼阁), Zhou Ke-Ya (周可雅), Fang Guang-Yu (方光宇), Liu Zheng-Jun(刘正君), and Liu Shu-Tian (刘树田) . Chin. Phys. B, 2012, 21(1): 014208.
[7] Two-dimensional non-spatial filtering based on holographic Bragg gratings
He Yan-Lan (何焰蓝), Zheng Hao-Bin (郑浩斌), Tan Ji-Chun (谭吉春), Ding Dao-Yi (丁道一), Zheng Guang-Wei (郑光威), Wang Xiao (王逍)-Dong (王晓东), Wang Xiao (王逍). Chin. Phys. B, 2010, 19(7): 074215.
[8] Dynamic analysis of holographic gratings in amulti-wavelength visible light sensitive photopolymer
Chen Ke(陈珂), Cheng Jian-Qun(成建群), Wang Yan(王艳), and Huang Ming-Ju(黄明举). Chin. Phys. B, 2010, 19(1): 014204.
[9] Superposition of orbital angular momentum of photons by a combined computer-generated hologram fabricated in silica glass with femtosecond laser pulses
Guo Zhong-Yi (郭忠义), Qu Shi-Liang (曲士良), Sun Zheng-He (孙正和), Liu Shu-Tian (刘树田). Chin. Phys. B, 2008, 17(11): 4199-4203.
[10] Kinetics investigations for holographic Bragg gratingbased on polymer dispersed liquid crystal
Zheng Zhi-Gang(郑致刚), Song Jing(宋静), Zhang Ling-Li(张伶莉), Liu Yong-Gang(刘永刚), Guo Fu-Zhong(郭福忠), Ma Ji(马骥), Li Wen-Cui(李文萃), Deng Shu-Peng(邓舒鹏), and Xuan Li(宣丽). Chin. Phys. B, 2008, 17(9): 3227-3235.
[11] Study on holographic grating diffraction for Laguerre--Gaussian beam generation
Liu Yi-Dong(刘义东), Gao Chun-Qing(高春清), and Gao Ming-Wei(高明伟). Chin. Phys. B, 2008, 17(5): 1769-1776.
[12] Diffraction of an ultrashort pulsed beam with arbitrary polarization state from a volume holographic grating in LiNbO3 crystals
Wang Chun-Hua(王春花), Liu Li-Ren(刘立人), Yan Ai-Min(闫爱民), Zhou Yu(周煜), Liu De-An(刘德安), and Hu Zhi-Juan(胡志娟). Chin. Phys. B, 2007, 16(1): 100-105.
[13] Holographic grating formation in dry photopolymer film with shrinkage
Luo Shou-Jun (骆守俊), Liu Guo-Dong (刘国栋), He Qing-Sheng (何庆声), Wu Min-Xian (邬敏贤), Jin Guo-Fan (金国藩), Shi Meng-Quan (施盟泉), Wang Tao (王涛), Wu Fei-Peng (吴飞鹏). Chin. Phys. B, 2004, 13(9): 1428-1431.
[14] MULTIFACTORIAL ORTHOGONAL DECISION ON DIFFRACTION EFFICIENCY OF FRESNEL HOLOGRAM
XU LEI (许蕾), ZHANG ZHAO-QUN (张肇群), PENG XIAO-YUAN (彭晓原). Chin. Phys. B, 1998, 7(4): 283-287.
[15] DESIGN OF DIFFRACTIVE-PHASE AXICON ILLUMINATED BY A GAUSSIAN-PROFILE BEAM
ZHANG GUO-QING (张国庆), DONG BI-ZHEN (董碧珍), YANG GUO-ZHEN (杨国桢), GU BEN-YUAN (顾本源). Chin. Phys. B, 1996, 5(5): 354-364.
No Suggested Reading articles found!