Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(2): 020305    DOI: 10.1088/1674-1056/ab6720
GENERAL Prev   Next  

Monogamy and polygamy relations of multiqubit entanglement based on unified entropy

Zhi-Xiang Jin(靳志祥)1, Cong-Feng Qiao(乔从丰)1,2
1 School of Physics, University of Chinese Academy of Sciences, Beijing 100049, China;
2 CAS Center for Excellence in Particle Physics, Beijing 100049, China
Abstract  Monogamy relation is one of the essential properties of quantum entanglement, which characterizes the distribution of entanglement in a multipartite system. By virtual of the unified-(q,s) entropy, we obtain some novel monogamy and polygamy inequalities in general class of entanglement measures. For the multiqubit system, a class of tighter monogamy relations are established in term of the α-th power of unified-(q,s) entanglement for α≥1. We also obtain a class of tighter polygamy relations in the β-th (0≤β≤1) power of unified-(q,s) entanglement of assistance. Applying these results to specific quantum correlations, e.g., entanglement of formation, Renyi-q entanglement of assistance, and Tsallis-q entanglement of assistance, we obtain the corresponding monogamy and polygamy relations. Typical examples are presented for illustration. Furthermore, the complementary monogamy and polygamy relations are investigated for the α-th (0≤α≤q 1) and β-th (β≥1) powers of unified entropy, respectively, and the corresponding monogamy and polygamy inequalities are obtained.
Keywords:  quantum monogamy      quantum polygamy      unified entropy  
Received:  10 November 2019      Revised:  09 December 2019      Accepted manuscript online: 
PACS:  03.67.Mn (Entanglement measures, witnesses, and other characterizations)  
  03.65.Ud (Entanglement and quantum nonlocality)  
Fund: Project supported by the National Basic Research Program of China (Grant No. 2015CB856703), the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDB23030100), the National Natural Science Foundation of China (Grant Nos. 11847209, 11375200, and 11635009), and the China Postdoctoral Science Foundation.
Corresponding Authors:  Zhi-Xiang Jin, Cong-Feng Qiao     E-mail:  jzxjinzhixiang@126.com;qiaof@ucas.ac.cn

Cite this article: 

Zhi-Xiang Jin(靳志祥), Cong-Feng Qiao(乔从丰) Monogamy and polygamy relations of multiqubit entanglement based on unified entropy 2020 Chin. Phys. B 29 020305

[1] Nielsen M A and Chuang I L 2000 Quantum Computation and Quantum Information (Cambridge: Cambridge University Press)
[2] Horodecki R, Horodecki P, Horodecki M and Horodecki K 2009 Rev. Mod. Phys. 81 865
[3] Mintert F, Kuś M and Buchleitner A 2004 Phys. Rev. Lett. 92 167902
[4] Chen K, Albeverio S and Fei S M 2005 Phys. Rev. Lett. 95 040504
[5] Breuer H P 2006 J. Phys. A: Math. Gen. 39 11847
[6] Breuer H P 2006 Phys. Rev. Lett. 97 080501
[7] Vicente J I de 2007 Phys. Rev. A 75 052320
[8] Zhang C J, Zhang Y S, Zhang S and Guo G C 2007 Phys. Rev. A 76 012334
[9] Coffman V, Kundu J and Wootters W K 2000 Phys. Rev. A 61 052306
[10] Osborne T J and Verstraete F 2006 Phys. Rev. Lett. 96 220503
[11] Pawlowski M 2010 Phys. Rev. A 82 032313
[12] Wootters W K 1998 Phys. Rev. Lett. 80 2245
[13] Kim J S 2016 Ann. Phys. 373 197
[14] Kim J S 2016 Phys. Rev. A 94 062338
[15] Lu Y, Zhang F G and Li Y 2017 Sci. Rep. 7 1122
[16] Jin Z X, Fei S M and Li-Jost X 2018 Quantum. Inf. Process. 17 213
[17] Kim J S 2018 Phys. Rev. A 97 012334
[18] Kim J S 2018 Sci. Rep. 8 12245
[19] Jin Z X and Fei S M 2018 Quantum. Inf. Process. 17 2
[20] Jin Z X and Fei S M 2017 Quantum. Inf. Process. 16 77
[21] Zhu X N and Fei S M 2014 Phys. Rev. A 90 024304
[22] Jin Z X, Li J, Li T and Fei S M 2018 Phys. Rev. A 97 032336
[23] Gour G and Guo Y 2018 Quantum 2 81
[24] Guo Y 2018 Quantum. Inf. Process. 17 222
[25] Gour G, Meyer D A and Sanders B C 2005 Phys. Rev. A 72 042329
[26] Goura G, Bandyopadhyayb S and Sandersc B C 2007 J. Math. Phys. 48 012108
[27] Kim J S and Sanders B C 2011 J. Phys. A: Math. Theor. 44 295303
[28] Kim J S 2010 Phys. Rev. A 81 062328
[29] Hu X and Ye Z 2006 J. Math. Phys. 47 023502
[30] Rastegin A E 2011 J. Stat. Phys. 143 1120
[31] Horodecki R, Horodecki P and Horodecki M 1996 Phys. Lett. A 210 377
[32] Kim J S and Sanders B C 2010 J. Phys. A: Math. Theor. 43 445305
[33] Tsallis C 1998 J. Stat. Phys. 52 479
[34] Kim J S 2012 Phys. Rev. A 85 032335
[35] Liang Y, Zheng Z J and Zhu C J 2018 arXiv:1810 09131
[36] Farooq A, Rehman J, Jeong Y, Kim J S and Shin H 2019 Sci. Rep. 9 3314
[1] Unified entropy entanglement with tighter constraints on multipartite systems
Qi Sun(孙琪), Tao Li(李陶), Zhi-Xiang Jin(靳志祥), and Deng-Feng Liang(梁登峰). Chin. Phys. B, 2023, 32(3): 030304.
[2] Transformation relation between coherence and entanglement for two-qubit states
Qing-Yun Zhou(周晴云), Xiao-Gang Fan(范小刚), Fa Zhao(赵发), Dong Wang(王栋), and Liu Ye(叶柳). Chin. Phys. B, 2023, 32(1): 010304.
[3] Direct measurement of two-qubit phononic entangled states via optomechanical interactions
A-Peng Liu(刘阿鹏), Liu-Yong Cheng(程留永), Qi Guo(郭奇), Shi-Lei Su(苏石磊), Hong-Fu Wang(王洪福), and Shou Zhang(张寿). Chin. Phys. B, 2022, 31(8): 080307.
[4] Tetrapartite entanglement measures of generalized GHZ state in the noninertial frames
Qian Dong(董茜), R. Santana Carrillo, Guo-Hua Sun(孙国华), and Shi-Hai Dong(董世海). Chin. Phys. B, 2022, 31(3): 030303.
[5] Alternative non-Gaussianity measures for quantum states based on quantum fidelity
Cheng Xiang(向成), Shan-Shan Li(李珊珊), Sha-Sha Wen(文莎莎), and Shao-Hua Xiang(向少华). Chin. Phys. B, 2022, 31(3): 030306.
[6] Quantifying coherence with dynamical discord
Lian-Wu Yang(杨连武) and Yun-Jie Xia(夏云杰). Chin. Phys. B, 2021, 30(12): 120304.
[7] Effects of classical random external field on the dynamics of entanglement in a four-qubit system
Edwige Carole Fosso, Fridolin Tchangnwa Nya, Lionel Tenemeza Kenfack, and Martin Tchoffo. Chin. Phys. B, 2021, 30(11): 110310.
[8] Detection of the quantum states containingat most k-1 unentangled particles
Yan Hong(宏艳), Xianfei Qi(祁先飞), Ting Gao(高亭), and Fengli Yan(闫凤利). Chin. Phys. B, 2021, 30(10): 100306.
[9] Optimized monogamy and polygamy inequalities for multipartite qubit entanglement
Jia-Bin Zhang(张嘉斌), Zhi-Xiang Jin(靳志祥), Shao-Ming Fei(费少明), and Zhi-Xi Wang(王志玺). Chin. Phys. B, 2021, 30(10): 100310.
[10] Entanglement properties of GHZ and W superposition state and its decayed states
Xin-Feng Jin(金鑫锋), Li-Zhen Jiang(蒋丽珍), and Xiao-Yu Chen(陈小余). Chin. Phys. B, 2021, 30(6): 060301.
[11] Fine-grained uncertainty relation for open quantum system
Shang-Bin Han(韩尚斌), Shuai-Jie Li(李帅杰), Jing-Jun Zhang(张精俊), and Jun Feng(冯俊). Chin. Phys. B, 2021, 30(6): 060315.
[12] Quantum computation and error correction based on continuous variable cluster states
Shuhong Hao(郝树宏), Xiaowei Deng(邓晓玮), Yang Liu(刘阳), Xiaolong Su(苏晓龙), Changde Xie(谢常德), and Kunchi Peng(彭堃墀). Chin. Phys. B, 2021, 30(6): 060312.
[13] Nonlocal advantage of quantum coherence in a dephasing channel with memory
Ming-Liang Hu(胡明亮), Yu-Han Zhang(张宇晗), and Heng Fan(范桁). Chin. Phys. B, 2021, 30(3): 030308.
[14] Dissipative dynamics of an entangled three-qubit system via non-Hermitian Hamiltonian: Its correspondence with Markovian and non-Markovian regimes
M Rastegarzadeh and M K Tavassoly. Chin. Phys. B, 2021, 30(3): 034205.
[15] Quantifying entanglement in terms of an operational way
Deng-Hui Yu(于登辉) and Chang-Shui Yu(于长水). Chin. Phys. B, 2021, 30(2): 020302.
No Suggested Reading articles found!