Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(1): 014704    DOI: 10.1088/1674-1056/ab5ef7
RAPID COMMUNICATION Prev   Next  

Supersonic boundary layer transition induced by self-sustaining dual jets

Qiang Liu(刘强)1, Zhenbing Luo(罗振兵)1, Xiong Deng(邓雄)1, Zhiyong Liu(刘志勇)1,2, Lin Wang(王林)1, Yan Zhou(周岩)1
1 College of Aerospace Science and Engineering, National University of Defense Technology, Changsha 410073, China;
2 China Aerodynamic Research and Development Center, Mianyang 621000, China
Abstract  To promote high-speed boundary layer transition, this paper proposes an active self-sustaining dual jets (SDJ) actuator utilizing the energy of supersonic mainflow. Employing the nanoparticle-based planar laser scattering (NPLS), supersonic flat-plate boundary layer transition induced by SDJ is experimentally investigated in an Ma-2.95 low-turbulence wind tunnel. Streamwise and spanwise NPLS images are obtained to analyze fine flow structures of the whole transition process. The results reveal the transition control mechanisms that on the one hand, the jet-induced shear layer produces unstable Kelvin-Helmholtz instabilities in the wake flow, on the other hand, the jets also generates an adverse pressure gradient in the boundary layer and induce unstable streak structures, which gradually break down into turbulence downstream. The paper provides a new method for transition control of high-speed boundary layer, and have prospect both in theory and engineering application.
Keywords:  supersonic boundary layer transition      self-sustaining dual jets      nanoparticle-based planar laser scattering (NPLS)      vortex structures  
Received:  23 June 2019      Revised:  16 October 2019      Accepted manuscript online: 
PACS:  47.85.ld (Boundary layer control)  
  47.40.Ki (Supersonic and hypersonic flows)  
  47.80.Jk (Flow visualization and imaging)  
  47.27.De (Coherent structures)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11602299, 11872374, and 51809271).
Corresponding Authors:  Zhenbing Luo, Xiong Deng     E-mail:  luozhenbing@163.com;badi_arg@126.com

Cite this article: 

Qiang Liu(刘强), Zhenbing Luo(罗振兵), Xiong Deng(邓雄), Zhiyong Liu(刘志勇), Lin Wang(王林), Yan Zhou(周岩) Supersonic boundary layer transition induced by self-sustaining dual jets 2020 Chin. Phys. B 29 014704

[1] Fedorov A 2011 Ann. Rev. Fluid Mech. 43 79
[2] Zhong X L and Wang X W 2012 Ann. Rev. Fluid Mech. 44 527
[3] Fong K D, Wang X W and Zhong X L 2014 Comput. Fluids 96 350
[4] Tang Q, Zhu Y D, Chen X and Lee C B 2015 Phys. Fluids 27 064105
[5] Berry S A, Nowak R J and Horvath T J 2004 34th AIAA Fluid Dynamics Conference, 28 June-1 July, 2004, Oregon, Portland, p. 2246
[6] Wang X W and Zhong X L 2009 Phys. Fluids 21 044101
[7] Yan H and Gaitonde D 2010 Phys. Fluids 22 064101
[8] Wang X W and Zhong X L 2008 38th Fluid Dynamics Conference and Exhibit, 23-26 June, 2008, Washinfton, USA, p. 3731
[9] André T, Durant A and Fedioun I 2017 AIAA J. 55 1
[10] Luo Z B, Xia Z X and Liu B 2006 AIAA J. 44 2418
[11] Zhao Y X, Yi S H, Tian L F and Cheng Z Y 2009 Sci. Chin. Ser. E- Tech. 52 3640
[12] Zhang Q H, Zhu T, Yi S H and Wu A P 2016 Chin. Phys. B 25 054701
[13] Zhang Q H, Yi S H, He L, Zhu Y Z and Chen Z 2013 Chin. Phys. B 22 114703
[14] Richard G H, Jeff S N and Russell L D 2001 J. Spacecr. Rockets 38 51
[15] Liu Q, Luo Z B, Deng X, Wang D P, Wang L, Zhou Y and Cheng P 2019 Acta Astronau. 164 262
[16] Yang S K, Luo Z B, Deng X, Liu Q and Wang L 2017 Proceeding of APCATS 2017 & AJSAE 2017, 20-23 November, 2017, Beijing, China, p. 387
[17] Sreenivasan K R 1991 Ann. Rev. Fluid Mech. 23 539
[18] Pirozzoli S, Bernardini M and Grasso F 2008 J. Fluid Mech. 613 205
[19] Yoshikawa J, Nishio Y, Izawa S and Fukunishi Y 2018 Phys. Rev. Fluids 3 013904
[20] He L, Yi S H, Zhao Y X, Tian L F and Chen Z 2011 Chin. Sci. Bull. 56 489
[21] Kelso R M and Smits A J 1995 Phys. Fluids 7 153
[22] Adrian R J, Meinhart C D and Tomkins C D 2000 J. Fluid Mech. 422 1
[23] Christensen K T and Adrian R J 2001 J. Fluid Mech. 431 433
[1] Effects of single synthetic jet on turbulent boundary layer
Jin-Hao Zhang(张津浩), Biao-Hui Li(李彪辉), Yu-Fei Wang(王宇飞), and Nan Jiang(姜楠). Chin. Phys. B, 2022, 31(7): 074702.
[2] Experimental investigation on drag reduction in a turbulent boundary layer with a submerged synthetic jet
Biao-Hui Li(李彪辉), Kang-Jun Wang(王康俊), Yu-Fei Wang(王宇飞), and Nan Jiang(姜楠). Chin. Phys. B, 2022, 31(2): 024702.
[3] Influence of uniform momentum zones on frictional drag within the turbulent boundary layer
Kangjun Wang(王康俊) and Nan Jiang(姜楠). Chin. Phys. B, 2021, 30(3): 034703.
[4] Effect of high-or low-speed fluctuations on the small-scale bursting events in an active control experiment
Xiao-Tong Cui(崔晓通), Nan Jiang(姜楠), and Zhan-Qi Tang(唐湛棋). Chin. Phys. B, 2021, 30(1): 014702.
[5] Dynamic stall control over an airfoil by NS-DBD actuation
He-Sen Yang(杨鹤森), Guang-Yin Zhao(赵光银)†, Hua Liang(梁华)‡, and Biao Wei(魏彪). Chin. Phys. B, 2020, 29(10): 105203.
[6] Coherent structures over riblets in turbulent boundary layer studied by combining time-resolved particle image velocimetry (TRPIV), proper orthogonal decomposition (POD), and finite-time Lyapunov exponent (FTLE)
Shan Li(李山), Nan Jiang(姜楠), Shaoqiong Yang(杨绍琼), Yongxiang Huang(黄永祥), Yanhua Wu(吴彦华). Chin. Phys. B, 2018, 27(10): 104701.
[7] UAV flight test of plasma slats and ailerons with microsecond dielectric barrier discharge
Zhi Su(苏志), Jun Li(李军), Hua Liang(梁华), Bo-Rui Zheng(郑博睿), Biao Wei(魏彪), Jie Chen(陈杰), Li-Ke Xie(谢理科). Chin. Phys. B, 2018, 27(10): 105205.
[8] Active control of wall-bounded turbulence for drag reduction with piezoelectric oscillators
Jian-Xia Bai(白建侠), Nan Jiang(姜楠), Xiao-Bo Zheng(郑小波), Zhan-Qi Tang(唐湛琪), Kang-Jun Wang(王康俊), Xiao-Tong Cui(崔晓通). Chin. Phys. B, 2018, 27(7): 074701.
[9] Predetermined control of turbulent boundary layer with a piezoelectric oscillator
Xiao-Bo Zheng(郑小波), Nan Jiang(姜楠), Hao Zhang(张浩). Chin. Phys. B, 2016, 25(1): 014703.
No Suggested Reading articles found!