Special Issue:
SPECIAL TOPIC — Advanced calculation & characterization of energy storage materials & devices at multiple scale
|
SPECIAL TOPIC—Advanced calculation & characterization of energy storage materials & devices at multiple scale |
Prev
Next
|
|
|
Photon-in/photon-out endstation for studies of energy materials at beamline 02B02 of Shanghai Synchrotron Radiation Facility |
Guoxi Ren(任国玺)1,2,3, Nian Zhang(张念)1,2, Xuefei Feng(冯雪飞)1,2, Hui Zhang(章辉)1,2, Pengfei Yu(于鹏飞)1,2, Shun Zheng(郑顺)1,2,3, Deng Zhou(周櫈)1,2,3, Zongwang Tian(田宗旺)1,2,4, Xiaosong Liu(刘啸嵩)1,2,4 |
1 State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China; 2 CAS Center for Excellence in Superconducting Electronics(CENSE), Chinese Academy of Sciences, Shanghai 200050, China; 3 University of Chinese Academy of Sciences, Beijing 100049, China; 4 School of Physical Science and Technology, Shanghai Tech University, Shanghai 201210, China |
|
|
Abstract A new photon-in/photon-out endstation at beamline 02B02 of the Shanghai Synchrotron Radiation Facility for studying the electronic structure of energy materials has been constructed and fully opened to users. The endstation has the capability to perform soft x-ray absorption spectroscopy in total electron yield and total fluorescence yield modes simultaneously. The photon energy ranges from 40 eV to 2000 eV covering the K-edge of most low Z-elements and the L-edge of 3d transition-metals. The new self-designed channeltron detector allows us to achieve good fluorescence signals at the low photon flux. In addition, we synchronously collect the signals of a standard reference sample and a gold mesh on the upstream to calibrate the photon energy and monitor the beam fluctuation, respectively. In order to cross the pressure gap, in situ gas and liquid cells for soft x-ray absorption spectroscopy are developed to study the samples under realistic working conditions.
|
Received: 30 October 2019
Revised: 15 November 2019
Accepted manuscript online:
|
PACS:
|
61.05.cj
|
(X-ray absorption spectroscopy: EXAFS, NEXAFS, XANES, etc.)
|
|
07.85.Qe
|
(Synchrotron radiation instrumentation)
|
|
88.80.-q
|
(Energy delivery and storage)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11227902) as part of NSFC ME2 beamline project, Science and Technology Commission of Shanghai Municipality, China (Grant No. 14520722100), and the National Natural Science Foundation of China (Grant Nos. 11905283 and U1632269). |
Corresponding Authors:
Xiaosong Liu
E-mail: xliu3@mail.sim.ac.cn
|
Cite this article:
Guoxi Ren(任国玺), Nian Zhang(张念), Xuefei Feng(冯雪飞), Hui Zhang(章辉), Pengfei Yu(于鹏飞), Shun Zheng(郑顺), Deng Zhou(周櫈), Zongwang Tian(田宗旺), Xiaosong Liu(刘啸嵩) Photon-in/photon-out endstation for studies of energy materials at beamline 02B02 of Shanghai Synchrotron Radiation Facility 2020 Chin. Phys. B 29 016101
|
[1] |
Etacheri V, Marom R, Elazari R, Salitra G and Aurbach D 2011 Energ. Environ Sci. 4 3243
|
[2] |
Cheng X B, Zhang R, Zhao C Z and Zhang Q 2017 Chem. Rev. 117 10403
|
[3] |
Mefford J T, Rong X, Abakumov A M, Hardin W G, Dai S, Kolpak A M, Johnston K P and Stevenson K J 2016 Nat. Commun. 7 11053
|
[4] |
Sun M H, Huang S Z, Chen L H, Li Y, Yang X Y, Yuan Z Y and Su B L 2016 Chem. Soc. Rev. 45 3479
|
[5] |
Yu H S, Wei X J, Li J, Gu S Q, Zhang S, Wang L H, Ma J Y, Li L N, Gao Q, Si R, Sun F F, Wang Y, Song F, Xu H J, Yu X H, Zou Y, Wang J Q, Jiang Z and Huang Y Y 2015 Nucl. Sci. Tech. 26 050102
|
[6] |
Cai J, Dong Q, Han Y, Mao B H, Zhang H, Karlsson P G, Åhlund J, Tai R Z, Yu Y and Liu Z 2019 Nucl. Sci. Tech. 30 81
|
[7] |
Zheng L and Wu X S 2013 Chin. Phys. B 22 107806
|
[8] |
Long X H, Wu Y R, Zhang N, Yu P F, Feng X F, Zheng S, Fu J M, Liu X S, Liu N, Wang M, Xu L M, Chen J M and Lee J M 2018 Chin. Phys. B 27 107802
|
[9] |
Zhang N, Long X H, Wang Z, Yu P F, Han F D, Fu J M, Ren G X, Wu Y R, Zheng S, Huang W C, Wang C S, Li H and Liu X S 2018 ACS Appl. Energy Mater. 1 5968
|
[10] |
Moses A W, Flores H G G, Kim J G and Langell M A 2007 Appl. Surf. Sci. 253 4782
|
[11] |
Qiao R M, Wray L A, Kim J H, Pieczonka N P W, Harris S J and Yang W L 2015 J. Phys. Chem. C 119 27228
|
[12] |
Wan G, Yu P F, Chen H R, Wen J G, Sun C J, Zhou H, Zhang N, Li Q R, Zhao W P, Xie B, Li T and Shi J L 2018 Small 14 e1704319
|
[13] |
Fu J M, Yu P F, Zhang N, Ren G X, Zheng S, Huang W C, Long X H, Li H and Liu X S 2019 Energ. Environ Sci. 12 1404
|
[14] |
Qiao R M, Lucas I T, Karim A, Syzdek J, Liu X S, Chen W, Persson K, Kostecki R and Yang W L 2014 Adv. Mater. Interfaces 1 1300115
|
[15] |
Liu X S, Wang D D, Liu G, Srinivasan V, Liu Z, Hussain Z and Yang W L 2013 Nat. Commun. 4 2568
|
[16] |
Rao F, Song Z T, Cheng Y, Liu X S, Xia M J, Li W, Ding K Y, Feng X F, Zhu M and Feng S L 2015 Nat. Commun. 6 10040
|
[17] |
Zhang S, Gu S Q, Wang Y, Liang C, Yu Y, Han L, Zheng S, Zhang N, Liu X S, Zhou J and Li J 2019 ACS Catal 9 7389
|
[18] |
Yang J, Qiu Z Y, Zhao C M, Wei W C, Chen W X, Li Z J, Qu Y T, Dong J C, Luo J, Li Z Y and Wu Y E 2018 Angew. Chem. Int. Ed. Engl. 57 14095
|
[19] |
Wan J W, Chen W X, Jia C Y, Zheng L R, Dong J C, Zheng X S, Wang Y, Yan W S, Chen C, Peng Q, Wang D S and Li Y D 2018 Adv. Mater. 30 1705369
|
[20] |
Yu M J, Wang Y and Xu W 2016 Chin. Phys. B 25 048701
|
[21] |
Yang J, Zhu F, Zhang Q, Wu Y, Wu X, Qin S, Dong J C and Chen D L 2013 Chin. Phys. Lett. 30 046101
|
[22] |
Yu P F, Cui Z H, Meng J W and Guo X X 2013 Chin. Phys. Lett. 30 036102
|
[23] |
Meng X Y, Guo Z, Wang Y, Zhang H, Han Y, Zhao G F, Liu Z and Tai R Z 2019 J. Synchrotron Radiat 26 543
|
[24] |
Guo Z, Meng X Y, Wang Y, Liu H G, Zhang X Z, Li Z L, Xue L and Tai R Z 2017 J. Synchrotron Radiat 24 877
|
[25] |
Guo J H, Luo Y, Augustsson A, Rubensson J E, Sathe C, Agren H, Siegbahn H and Nordgren J 2002 Phys. Rev. Lett. 89 137402
|
[26] |
Guo J H 2013 J. Electron. Spectrosc. Relat. Phenom. 188 71
|
[27] |
Arthur T S, Glans P A, Matsui M, Zhang R G, Ma B W and Guo J H 2012 Electrochem. Commun. 24 43
|
[28] |
Liu X S, Liu J, Qiao R M, Yu Y, Li H, Suo L M, Hu Y S, Chuang Y D, Shu G J, Chou F C, Weng T C, Nordlund D, Sokaras D, Wang Y J, Lin H, Barbiellini B, Bansil A, Song X Y, Liu Z, Yan S S, Liu G, Qiao S, Richardson T J, Prendergast D, Hussain Z, de Groot F M F and Yang W L 2012 J. Am. Chem. Soc. 134 13708
|
[29] |
Cheng L, Crumlin E J, Chen W, Qiao R M, Hou H M, Franz Lux S, Zorba V, Russo R, Kostecki R, Liu Z, Persson K, Yang W L, Cabana J, Richardson T, Chen G Y and Doeff M 2014 Phys. Chem. Chem. Phys. 16 18294
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|