Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(1): 010302    DOI: 10.1088/1674-1056/ab5937
GENERAL Prev   Next  

A new way to construct topological invariants of non-Hermitian systems with the non-Hermitian skin effect

J S Liu(刘建森), Y Z Han(韩炎桢), C S Liu(刘承师)
Hebei Key Laboratory of Microstructural Material Physics, School of Science, Yanshan University, Qinhuangdao 066004, China
Abstract  The non-Hermitian skin effect breaks the conventional bulk-boundary correspondence and leads to non-Bloch topological invariants. Inspired by the fact that the topological protected zero modes are immune to perturbations, we construct a partner of a non-Hermitian system by getting rid of the non-Hermitian skin effect. Through adjusting the imbalance hopping, we find that the existence of zero-energy boundary states still dictate the bulk topological invariants based on the band-theory framework. Two non-Hermitian Su-Schrieffer-Heeger (SSH) models are used to illuminate the ideas. Specially, we obtain the winding numbers in analytical form without the introduction of the generalized Brillouin zone. The work gives an alternative method to calculate the topological invariants of non-Hermitian systems.
Keywords:  non-Hermitian skin effect      Su-Schrieffer-Heeger (SSH) model      bulk-boundary correspondence      topological invariant  
Received:  16 October 2019      Revised:  13 November 2019      Accepted manuscript online: 
PACS:  03.65.Vf (Phases: geometric; dynamic or topological)  
  05.70.Fh (Phase transitions: general studies)  
  64.70.Tg (Quantum phase transitions)  
Fund: Project supported by Hebei Provincial Natural Science Foundation of China (Grant Nos. A2012203174 and A2015203387) and the National Natural Science Foundation of China (Grant Nos. 10974169 and 11304270).
Corresponding Authors:  C S Liu     E-mail:  csliu@ysu.edu.cn

Cite this article: 

J S Liu(刘建森), Y Z Han(韩炎桢), C S Liu(刘承师) A new way to construct topological invariants of non-Hermitian systems with the non-Hermitian skin effect 2020 Chin. Phys. B 29 010302

[1] Hasan M Z and Kane C L 2010 Rev. Mod. Phys. 82 3045
[2] Qi X L and Zhang S C 2011 Rev. Mod. Phys. 83 1057
[3] Lee T E 2016 Phys. Rev. Lett. 116 133903
[4] Ye X 2018 Journal of Physics Communications 2 035043
[5] Flore K K, Elisabet E, Jan C B and Emil J B 2018 Phys. Rev. Lett. 121 026808
[6] Martinez A V M, Barrios V J E,Berdakin M and Foa T L E F 2018 Eur. Phys. J. Spec. Top. 227 1295
[7] Zhou H Y and Lee J Y 2019 Phys. Rev. B 99 235112
[8] Liu C H and Chen S 2019 Phys. Rev. B 100 144106
[9] Liu C H, Jiang H and Chen S 2019 Phys. Rev. B 99 125103
[10] Yao S Y and Wang Z 2018 Phys. Rev. Lett. 121 086803
[11] Kazuki Y and Shuichi M 2019 Phys. Rev. Lett. 123 066404
[12] Song F, Yao S Y and Wang Z 2019 arXiv 1905 02211[cond-mat.meshall]
[13] Deng T S and Yi W 2019 Phys. Rev. B 100 035102
[14] Yao S Y, Song F and Wang Z 2018 Phys. Rev. Lett. 121 136802
[15] Xiao L, Deng T S, Wang K K, Zhu G Y, Wang Z, Yi W and Xue P 2019 arXiv 1907 12566[cond-mat.mes-hall]
[16] Tobias H, Tobias H, Stefan I, Mohamed A, Tobias K, Laurens W M, Ching H L, Alexander S, Martin G and Ronny T 2019 arXiv 1907 11562 [cond-mat.mes-hall]
[17] Jin L and Song Z 2019 Phys. Rev. B 99 081103
[18] Ali M 2002 J. Math. Phys. 43 205
[19] Carl M B and Stefan B 1998 Phys. Rev. Lett. 80 5243
[20] Wu H C, Jin L and Song Z 2019 Phys. Rev. B 100 155117
[21] Daniel L, Konstantin Y B, Chunli H, Chong Y D and Franco N 2017 Phys. Rev. Lett. 118 040401
[22] Yin C H, Jiang H, Li L H, Lü R and Chen S 2014 Phys. Rev. A 97 052115
[23] Han Y Z, Jiang H, Chen S and Liu C S 2019 Physica E 110 68-73
[24] Simon L 2018 Phys. Rev. B 97 045106
[25] Shen H, Zhen B and Fu L 2018 Phys. Rev. Lett. 120 146402
[26] Li C, Zhang X Z, Zhang G and Song Z 2018 Phys. Rev. B 97 115436
[27] Rudner M S and Levitov L S 2009 Phys. Rev. Lett. 102 065703
[28] Jiang H, Yang C and Chen S 2018 Phys. Rev. A 98 052116
[29] Gurarie V 2011 Phys. Rev. B 83 085426
[30] Wang Z and Zhang S C 2014 Phys. Rev. X 4 011006
[31] Alexei K 2006 Ann. Phys. 321 2
[32] Feng X Y, Zhang G M and Xiang T 2007 Phys. Rev. Lett. 98 087204
[33] Yasuhiro S, Satoshi A, Takaaki J, Masayuki I and Yutaka U 2015 Phys. Rev. Lett. 114 166403
[34] Sangmo C, Kim T, Lee S and Han W Y 2015 Phys. Rev. Lett. 350 182
[1] Real non-Hermitian energy spectra without any symmetry
Boxue Zhang(张博学), Qingya Li(李青铔), Xiao Zhang(张笑), and Ching Hua Lee(李庆华). Chin. Phys. B, 2022, 31(7): 070308.
[2] Filling up complex spectral regions through non-Hermitian disordered chains
Hui Jiang and Ching Hua Lee. Chin. Phys. B, 2022, 31(5): 050307.
[3] Non-Hermitian Weyl semimetals: Non-Hermitian skin effect and non-Bloch bulk-boundary correspondence
Xiaosen Yang(杨孝森), Yang Cao(曹阳), and Yunjia Zhai(翟云佳). Chin. Phys. B, 2022, 31(1): 010308.
[4] Topological properties of non-Hermitian Creutz ladders
Hui-Qiang Liang(梁辉强) and Linhu Li(李林虎). Chin. Phys. B, 2022, 31(1): 010310.
[5] Probe of topological invariants using quantum walks of a trapped ion in coherent state space
Ya Meng(蒙雅), Feng Mei(梅锋), Gang Chen(陈刚), Suo-Tang Jia(贾锁堂). Chin. Phys. B, 2020, 29(7): 070501.
[6] SymTopo:An automatic tool for calculating topological properties of nonmagnetic crystalline materials
Yuqing He(贺雨晴), Yi Jiang(蒋毅), Tiantian Zhang(张田田), He Huang(黄荷), Chen Fang(方辰), Zhong Jin(金钟). Chin. Phys. B, 2019, 28(8): 087102.
[7] Quantum spin Hall insulators in chemically functionalized As (110) and Sb (110) films
Xiahong Wang(王夏烘), Ping Li(李平), Zhao Ran(冉召), Weidong Luo(罗卫东). Chin. Phys. B, 2018, 27(8): 087305.
[8] Topologically protected edge gap solitons of interacting Bosons in one-dimensional superlattices
Xi-Hua Guo(郭西华), Tian-Fu Xu(徐天赋), Cheng-Shi Liu(刘承师). Chin. Phys. B, 2018, 27(6): 060307.
[9] Static and dynamic properties of polymer brush with topological ring structures: Molecular dynamic simulation
Wu-Bing Wan(万吴兵), Hong-Hong Lv(吕红红), Holger Merlitz(候格), Chen-Xu Wu(吴晨旭). Chin. Phys. B, 2016, 25(10): 106101.
No Suggested Reading articles found!