Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(9): 090201    DOI: 10.1088/1674-1056/ab38a7
GENERAL   Next  

Painlevé integrability of the supersymmetric Ito equation

Feng-Jie Cen(岑锋杰), Yan-Dan Zhao(赵燕丹), Shuang-Yun Fang(房霜韵), Huan Meng(孟欢), Jun Yu(俞军)
Department of Physics, Shaoxing University, Shaoxing 312000, China
Abstract  

A supersymmetric version of the Ito equation is proposed by extending the independent and dependent variables for the classic Ito equation. To investigate the integrability of the N=1 supersymmetric Ito (sIto) equation, a singularity structure analysis for this system is carried out. Through a detailed analysis in two cases by using Kruskal's simplified method, the sIto system is found to pass the Painlevé test, and thus is Painlevé integrable.

Keywords:  supersymmetric Ito equation      Painlevé      analysis      integrability  
Received:  20 May 2019      Revised:  23 June 2019      Accepted manuscript online: 
PACS:  02.30.Jr (Partial differential equations)  
  02.30.Ik (Integrable systems)  
  05.45.Yv (Solitons)  
  47.35.Fg (Solitary waves)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos. 11975156 and 11775146) and the Natural Science Foundation of Zhejiang Province, China (Grant No. LY18A050001).

Corresponding Authors:  Jun Yu     E-mail:  junyu@usx.edu.cn

Cite this article: 

Feng-Jie Cen(岑锋杰), Yan-Dan Zhao(赵燕丹), Shuang-Yun Fang(房霜韵), Huan Meng(孟欢), Jun Yu(俞军) Painlevé integrability of the supersymmetric Ito equation 2019 Chin. Phys. B 28 090201

[1] Ramond P 1971 Phys. Rev. D 3 2415
[2] Wess J and Zumino B 1974 Nucl. Phys. B 70 39
[3] Neveu A and Schwarz J H 1971 Nucl. Phys. B 31 86
[4] Mathieu P 1988 Phys. Lett. A 128 169
[5] Kupershmidt B A 1986 Mech. Res. Commun. 13 47
[6] Martin Y I and Radul A O 1985 Commun. Math. Phys. 98 65
[7] Liu Q P 2010 J. Math. Phys. 51 93511
[8] Zhang M X, Liu Q P, Wang J and Wu K 2008 Chin. Phys. B 17 10
[9] Ren B, Lin J and Yu J 2013 AIP Advances 3 042129
[10] Liu X Z and Yu J 2013 Z. Naturforsch. A 68 539
[11] Ablowitz M, Ramani A and Segur H 1980 J. Math. Phys. 21 715
[12] Weiss J, Tabor M and Carnevale G 1983 J. Math. Phys. 24 522
[13] Hlavat'y L 1989 Phys. Lett. A 137 173
[14] Brunelli J C and Das A 1995 J. Math. Phys. 36 268
[15] Bourque S and Mathieu P 2001 J. Math. Phys. 42 3517
[16] Zhang H P, Li B and Chen Y 2010 Appl. Math. Comput. 217 1555
[17] Lou S Y, Chen C L and Tang X Y 2002 J. Math. Phys. 43 4078
[18] Tang X Y and Hu H C 2002 Chin. Phys. Lett. 19 1225
[19] Ebadi G, Kara A H, Petkovic M D, Yildirim A and Biswas A 2012 P. Romanian Acad. A 13 215
[20] Hu X B and Li Y 1991 J. Phys. A 24 1979
[21] Drinfeld V G and Sokolov V 1985 J. Sov. Math. 30 1975
[22] Liu Q P 2000 Phys. Lett. A 277 31
[23] Conte R 1989 Phys. Lett. A 140 383
[24] Lou S Y 1998 Z. Naturforsch. 53a 251
[1] Acoustic propagation uncertainty in internal wave environments using an ocean-acoustic joint model
Fei Gao(高飞), Fanghua Xu(徐芳华), Zhenglin Li(李整林), Jixing Qin(秦继兴), and Qinya Zhang(章沁雅). Chin. Phys. B, 2023, 32(3): 034302.
[2] Performance analysis of quantum key distribution using polarized coherent-states in free-space channel
Zengte Zheng(郑增特), Ziyang Chen(陈子扬), Luyu Huang(黄露雨),Xiangyu Wang(王翔宇), and Song Yu(喻松). Chin. Phys. B, 2023, 32(3): 030306.
[3] Effect of bio-tissue deformation behavior due to intratumoral injection on magnetic hyperthermia
Yundong Tang(汤云东), Jian Zou(邹建), Rodolfo C.C. Flesch, and Tao Jin(金涛). Chin. Phys. B, 2023, 32(3): 034304.
[4] Quantitative analysis of soliton interactions based on the exact solutions of the nonlinear Schrödinger equation
Xuefeng Zhang(张雪峰), Tao Xu(许韬), Min Li(李敏), and Yue Meng(孟悦). Chin. Phys. B, 2023, 32(1): 010505.
[5] A novel algorithm to analyze the dynamics of digital chaotic maps in finite-precision domain
Chunlei Fan(范春雷) and Qun Ding(丁群). Chin. Phys. B, 2023, 32(1): 010501.
[6] Computational studies on magnetism and ferroelectricity
Ke Xu(徐可), Junsheng Feng(冯俊生), and Hongjun Xiang(向红军). Chin. Phys. B, 2022, 31(9): 097505.
[7] Finite-key analysis of practical time-bin high-dimensional quantum key distribution with afterpulse effect
Yu Zhou(周雨), Chun Zhou(周淳), Yang Wang(汪洋), Yi-Fei Lu(陆宜飞), Mu-Sheng Jiang(江木生), Xiao-Xu Zhang(张晓旭), and Wan-Su Bao(鲍皖苏). Chin. Phys. B, 2022, 31(8): 080303.
[8] Bifurcation analysis of visual angle model with anticipated time and stabilizing driving behavior
Xueyi Guan(管学义), Rongjun Cheng(程荣军), and Hongxia Ge(葛红霞). Chin. Phys. B, 2022, 31(7): 070507.
[9] A nonlinear wave coupling algorithm and its programing and application in plasma turbulences
Yong Shen(沈勇), Yu-Hang Shen(沈煜航), Jia-Qi Dong(董家齐), Kai-Jun Zhao(赵开君), Zhong-Bing Shi(石中兵), and Ji-Quan Li(李继全). Chin. Phys. B, 2022, 31(6): 065206.
[10] Influences of Marangoni convection and variable magnetic field on hybrid nanofluid thin-film flow past a stretching surface
Noor Wali Khan, Arshad Khan, Muhammad Usman, Taza Gul, Abir Mouldi, and Ameni Brahmia. Chin. Phys. B, 2022, 31(6): 064403.
[11] Effect of the target positions on the rapid identification of aluminum alloys by using filament-induced breakdown spectroscopy combined with machine learning
Xiaoguang Li(李晓光), Xuetong Lu(陆雪童), Yong Zhang(张勇),Shaozhong Song(宋少忠), Zuoqiang Hao(郝作强), and Xun Gao(高勋). Chin. Phys. B, 2022, 31(5): 054212.
[12] Fringe removal algorithms for atomic absorption images: A survey
Gaoyi Lei(雷高益), Chencheng Tang(唐陈成), and Yueyang Zhai(翟跃阳). Chin. Phys. B, 2022, 31(5): 050313.
[13] Maximum entropy mobility spectrum analysis for the type-I Weyl semimetal TaAs
Wen-Chong Li(李文充), Ling-Xiao Zhao(赵凌霄), Hai-Jun Zhao(赵海军),Gen-Fu Chen(陈根富), and Zhi-Xiang Shi(施智祥). Chin. Phys. B, 2022, 31(5): 057103.
[14] Dynamics and intermittent stochastic stabilization of a rumor spreading model with guidance mechanism in heterogeneous network
Xiaojing Zhong(钟晓静), Yukun Yang(杨宇琨), Runqing Miao(苗润青), Yuqing Peng(彭雨晴), and Guiyun Liu(刘贵云). Chin. Phys. B, 2022, 31(4): 040205.
[15] Influence of various shapes of nanoparticles on unsteady stagnation-point flow of Cu-H2O nanofluid on a flat surface in a porous medium: A stability analysis
Astick Banerjee, Krishnendu Bhattacharyya, Sanat Kumar Mahato, and Ali J. Chamkha. Chin. Phys. B, 2022, 31(4): 044701.
No Suggested Reading articles found!