CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES |
Prev
Next
|
|
|
Measurement scheme to detect α relaxation time of glass-forming liquid |
Xing-Yu Zhao(赵兴宇)1,2, Li-Na Wang(王丽娜)1,2, Hong-Mei Yin(尹红梅)1,2, Heng-Wei Zhou(周恒为)2, Yi-Neng Huang(黄以能)1,2 |
1 National Laboratory of Solid State Microstructures, School of Physics, Nanjing University, Nanjing 210093, China; 2 Xinjiang Laboratory of Phase Transitions and Microstructures in Condensed Matters, College of Physical Science and Technology, Yili Normal University, Yining 835000, China |
|
|
Abstract A measurement scheme for detecting the α relaxation time (τ) of glass-forming liquid is proposed, which is based on the measured ionic conductivity of the liquid doped with probing ions by low- and middle-frequency dielectric spectroscopy and according to the Nernst-Einstein, Stokes-Einstein, and Maxwell equations. The obtained τ values of glycerol and propylene carbonate by the scheme are consistent with those obtained by traditional dielectric spectroscopy, which confirms its reliability and accuracy. Moreover, the τ of 1,2-propanediol in a larger temperature range is compared with existing data.
|
Received: 25 April 2019
Revised: 18 May 2019
Accepted manuscript online:
|
PACS:
|
66.10.-x
|
(Diffusion and ionic conduction in liquids)
|
|
77.22.Gm
|
(Dielectric loss and relaxation)
|
|
64.70.P-
|
(Glass transitions of specific systems)
|
|
82.56.Na
|
(Relaxation)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11664042). |
Corresponding Authors:
Yi-Neng Huang
E-mail: ynhuang@nju.edu.cn
|
Cite this article:
Xing-Yu Zhao(赵兴宇), Li-Na Wang(王丽娜), Hong-Mei Yin(尹红梅), Heng-Wei Zhou(周恒为), Yi-Neng Huang(黄以能) Measurement scheme to detect α relaxation time of glass-forming liquid 2019 Chin. Phys. B 28 086601
|
[39] |
Nielsen A I, Christensen T, Jakobsen B, Niss K, Olsen N B, Richert R and Dyre J C 2009 J. Chem. Phys. 130 154508
|
[1] |
Dyre J C 2006 Rev. Mod. Phys. 78 953
|
[40] |
Bergman R, Svanberg C, Andersson D, Brodin A and Torell L M 1998 J. Non-Cryst. Solids 235 225
|
[2] |
Angell C A 1995 Science 267 1924
|
[41] |
Köhler M, Lunkenheimer P, Goncharov Y, Wehn R and Loidl A 2010 J. Non-Cryst. Solids 356 529
|
[3] |
Martinez-Garcia J C, Rzoska S J, Drozd-Rzoska A and Martinez-Garcia J 2013 Nat. Commun. 4 1823
|
[42] |
León C, Ngai K L, Rol and C M 1999 J. Chem. Phys. 110 11585
|
[4] |
Drozd-Rzoska A, Rzoska S J and Paluch M 2008 J. Chem. Phys. 129 184509
|
[43] |
Maggi C, Jakobsen B, Christensen T, Olsen N B and Dyre J C 2008 J. Phys. Chem. B 112 16320
|
[5] |
Hecksher T, Nielsen A I, Olsen N B and Dyre J C 2008 Nat. Phys. 4 737
|
[44] |
Meier R, Kahlau R, Kruk D and Rössler E A 2010 J. Phys. Chem. A 114 7847
|
[6] |
Mckenna G B 2008 Nature Phys. 4 673
|
[45] |
Dienes G J and Klemm H F 1946 J. Appl. Phys. 17 458
|
[7] |
Novikov V N 2016 Chem. Phys. Lett. 659 133
|
[46] |
Bakke E, Busch R and Johnson W L 1996 Mater. Sci. Forum 225-227 95
|
[8] |
Mauro J C, Yue Y, Ellisona A J, Guptac P K and Allana D C 2009 Proc. Natl. Acad. Sci. USA 106 19780
|
[47] |
Wilson S J and Poole D 1990 Mat. Res. Bull. 25 113
|
[9] |
Tan R R, Shen X, Hu L and Zhang F S 2012 Chin. Phys. B 21 86402
|
[48] |
Gao J, Zhao Y S, Shi S Q and Li H 2016 Chin. Phys. B 25 18211
|
[10] |
Zhang F, Chen Y M, Wang R P, Shen X, Wang J Q and Xu T F 2019 Chin. Phys. B 28 47802
|
[49] |
Isard J O 1999 J. Non-Cryst. Solids 246 16
|
[11] |
Angell C A, Ngai K L, Mckenna G B, Mcmillan P F and Martin S W 2000 J. Appl. Phys. 88 3113
|
[12] |
Scherer G W 1992 J. Am. Ceram. Soc. 75 1060
|
[13] |
Vogel H 1921 Phys. Zeit 22 645
|
[14] |
Fulcher G S 1925 J. Am. Ceram. Soc. 8 339
|
[15] |
Tammann G and Hesse W 1926 Z. Anorg. Allg. Chem. 156 245
|
[16] |
Colby R H 2000 Phys. Rev. E 61 1783
|
[17] |
Milchev I and Avramov A 1988 J. Non-Cryst. Solids 104 253
|
[18] |
Lunkenheimer P, Schneider U, Br, R and Loidl A 2000 Contemp. Phys. 41 15
|
[19] |
Kremer F 2002 J. Non-Cryst. Solids 305 1
|
[20] |
Lunkenheimer P, Kastner S, Köhler M and Loidl A 2010 Phys. Rev. E 81 51504
|
[21] |
Smedskjaer M M, Mauro J C and Yue Y 2009 J. Chem. Phys. 131 244514
|
[22] |
Johnson W L 1999 MRS Bull. 24 42
|
[23] |
Bocker C, Avramov I and Rüssel C 2010 Chem. Phys. 369 96
|
[24] |
Masuhr A, Waniuk T A, Busch R and Johnson W L 1999 Phys. Rev. Lett. 82 2290
|
[25] |
Sangoro J R, Iacob C, Naumov S, Hunger J, Rexhausen H, R Valiullin V, Strehmel, Buchner R, Kärger J and Kremer F 2011 Soft Matter 7 1678
|
[26] |
Ngai K L 2011 Relaxation and Diffusion in Complex Systems (New York: Springer) p. 3
|
[27] |
Einstein A 1956 Investigations on the theory of Brownian movement (New York: Dover) p. 12
|
[28] |
Einstein A 1905 Ann. Phys. (Berlin) 17 549
|
[29] |
Claisse F and Koenig H P 1956 Acta Metall. 4 650
|
[30] |
Nernst W 1888 Z. Phys. Chem. 2 613
|
[31] |
Stickel F, Fischer E W and Richert R 1996 J. Chem. Phys. 104 2043
|
[32] |
Pawlus S, Mierzwa M, Paluch M, Rzoska S J, Rol and C M 2010 J. Phys.: Condens. Matter 22 235101
|
[33] |
Stickel F, Kremer F and Fischer E W 1993 Phys. A 201 318
|
[34] |
Iacob C, Sangoro J R, Serghei A, Naumov S, Korth Y, Kärger J, Friedrich C and Kremer F 2008 J. Chem. Phys. 129 234511
|
[35] |
Havriliak S and Negami S 1967 Polymer 8 161
|
[36] |
Richert R 2010 J. Chem. Phys. 133 74502
|
[37] |
Wang J, Zhao K S and Wu L X 2014 J. Chem. Phys. 141 54502
|
[38] |
Ishai P B, Talary M S, Caduff A, Levy E and Feldman Y 2013 Meas. Sci. Technol. 24 102001
|
[39] |
Nielsen A I, Christensen T, Jakobsen B, Niss K, Olsen N B, Richert R and Dyre J C 2009 J. Chem. Phys. 130 154508
|
[40] |
Bergman R, Svanberg C, Andersson D, Brodin A and Torell L M 1998 J. Non-Cryst. Solids 235 225
|
[41] |
Köhler M, Lunkenheimer P, Goncharov Y, Wehn R and Loidl A 2010 J. Non-Cryst. Solids 356 529
|
[42] |
León C, Ngai K L, Rol and C M 1999 J. Chem. Phys. 110 11585
|
[43] |
Maggi C, Jakobsen B, Christensen T, Olsen N B and Dyre J C 2008 J. Phys. Chem. B 112 16320
|
[44] |
Meier R, Kahlau R, Kruk D and Rössler E A 2010 J. Phys. Chem. A 114 7847
|
[45] |
Dienes G J and Klemm H F 1946 J. Appl. Phys. 17 458
|
[46] |
Bakke E, Busch R and Johnson W L 1996 Mater. Sci. Forum 225-227 95
|
[47] |
Wilson S J and Poole D 1990 Mat. Res. Bull. 25 113
|
[48] |
Gao J, Zhao Y S, Shi S Q and Li H 2016 Chin. Phys. B 25 18211
|
[49] |
Isard J O 1999 J. Non-Cryst. Solids 246 16
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|