Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(8): 086601    DOI: 10.1088/1674-1056/28/8/086601
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Measurement scheme to detect α relaxation time of glass-forming liquid

Xing-Yu Zhao(赵兴宇)1,2, Li-Na Wang(王丽娜)1,2, Hong-Mei Yin(尹红梅)1,2, Heng-Wei Zhou(周恒为)2, Yi-Neng Huang(黄以能)1,2
1 National Laboratory of Solid State Microstructures, School of Physics, Nanjing University, Nanjing 210093, China;
2 Xinjiang Laboratory of Phase Transitions and Microstructures in Condensed Matters, College of Physical Science and Technology, Yili Normal University, Yining 835000, China
Abstract  A measurement scheme for detecting the α relaxation time (τ) of glass-forming liquid is proposed, which is based on the measured ionic conductivity of the liquid doped with probing ions by low- and middle-frequency dielectric spectroscopy and according to the Nernst-Einstein, Stokes-Einstein, and Maxwell equations. The obtained τ values of glycerol and propylene carbonate by the scheme are consistent with those obtained by traditional dielectric spectroscopy, which confirms its reliability and accuracy. Moreover, the τ of 1,2-propanediol in a larger temperature range is compared with existing data.
Keywords:  α relaxation      ionic conductivity      glass-forming liquid      dielectric spectroscopy  
Received:  25 April 2019      Revised:  18 May 2019      Accepted manuscript online: 
PACS:  66.10.-x (Diffusion and ionic conduction in liquids)  
  77.22.Gm (Dielectric loss and relaxation)  
  64.70.P- (Glass transitions of specific systems)  
  82.56.Na (Relaxation)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11664042).
Corresponding Authors:  Yi-Neng Huang     E-mail:  ynhuang@nju.edu.cn

Cite this article: 

Xing-Yu Zhao(赵兴宇), Li-Na Wang(王丽娜), Hong-Mei Yin(尹红梅), Heng-Wei Zhou(周恒为), Yi-Neng Huang(黄以能) Measurement scheme to detect α relaxation time of glass-forming liquid 2019 Chin. Phys. B 28 086601

[39] Nielsen A I, Christensen T, Jakobsen B, Niss K, Olsen N B, Richert R and Dyre J C 2009 J. Chem. Phys. 130 154508
[1] Dyre J C 2006 Rev. Mod. Phys. 78 953
[40] Bergman R, Svanberg C, Andersson D, Brodin A and Torell L M 1998 J. Non-Cryst. Solids 235 225
[2] Angell C A 1995 Science 267 1924
[41] Köhler M, Lunkenheimer P, Goncharov Y, Wehn R and Loidl A 2010 J. Non-Cryst. Solids 356 529
[3] Martinez-Garcia J C, Rzoska S J, Drozd-Rzoska A and Martinez-Garcia J 2013 Nat. Commun. 4 1823
[42] León C, Ngai K L, Rol and C M 1999 J. Chem. Phys. 110 11585
[4] Drozd-Rzoska A, Rzoska S J and Paluch M 2008 J. Chem. Phys. 129 184509
[43] Maggi C, Jakobsen B, Christensen T, Olsen N B and Dyre J C 2008 J. Phys. Chem. B 112 16320
[5] Hecksher T, Nielsen A I, Olsen N B and Dyre J C 2008 Nat. Phys. 4 737
[44] Meier R, Kahlau R, Kruk D and Rössler E A 2010 J. Phys. Chem. A 114 7847
[6] Mckenna G B 2008 Nature Phys. 4 673
[45] Dienes G J and Klemm H F 1946 J. Appl. Phys. 17 458
[7] Novikov V N 2016 Chem. Phys. Lett. 659 133
[46] Bakke E, Busch R and Johnson W L 1996 Mater. Sci. Forum 225-227 95
[8] Mauro J C, Yue Y, Ellisona A J, Guptac P K and Allana D C 2009 Proc. Natl. Acad. Sci. USA 106 19780
[47] Wilson S J and Poole D 1990 Mat. Res. Bull. 25 113
[9] Tan R R, Shen X, Hu L and Zhang F S 2012 Chin. Phys. B 21 86402
[48] Gao J, Zhao Y S, Shi S Q and Li H 2016 Chin. Phys. B 25 18211
[10] Zhang F, Chen Y M, Wang R P, Shen X, Wang J Q and Xu T F 2019 Chin. Phys. B 28 47802
[49] Isard J O 1999 J. Non-Cryst. Solids 246 16
[11] Angell C A, Ngai K L, Mckenna G B, Mcmillan P F and Martin S W 2000 J. Appl. Phys. 88 3113
[12] Scherer G W 1992 J. Am. Ceram. Soc. 75 1060
[13] Vogel H 1921 Phys. Zeit 22 645
[14] Fulcher G S 1925 J. Am. Ceram. Soc. 8 339
[15] Tammann G and Hesse W 1926 Z. Anorg. Allg. Chem. 156 245
[16] Colby R H 2000 Phys. Rev. E 61 1783
[17] Milchev I and Avramov A 1988 J. Non-Cryst. Solids 104 253
[18] Lunkenheimer P, Schneider U, Br, R and Loidl A 2000 Contemp. Phys. 41 15
[19] Kremer F 2002 J. Non-Cryst. Solids 305 1
[20] Lunkenheimer P, Kastner S, Köhler M and Loidl A 2010 Phys. Rev. E 81 51504
[21] Smedskjaer M M, Mauro J C and Yue Y 2009 J. Chem. Phys. 131 244514
[22] Johnson W L 1999 MRS Bull. 24 42
[23] Bocker C, Avramov I and Rüssel C 2010 Chem. Phys. 369 96
[24] Masuhr A, Waniuk T A, Busch R and Johnson W L 1999 Phys. Rev. Lett. 82 2290
[25] Sangoro J R, Iacob C, Naumov S, Hunger J, Rexhausen H, R Valiullin V, Strehmel, Buchner R, Kärger J and Kremer F 2011 Soft Matter 7 1678
[26] Ngai K L 2011 Relaxation and Diffusion in Complex Systems (New York: Springer) p. 3
[27] Einstein A 1956 Investigations on the theory of Brownian movement (New York: Dover) p. 12
[28] Einstein A 1905 Ann. Phys. (Berlin) 17 549
[29] Claisse F and Koenig H P 1956 Acta Metall. 4 650
[30] Nernst W 1888 Z. Phys. Chem. 2 613
[31] Stickel F, Fischer E W and Richert R 1996 J. Chem. Phys. 104 2043
[32] Pawlus S, Mierzwa M, Paluch M, Rzoska S J, Rol and C M 2010 J. Phys.: Condens. Matter 22 235101
[33] Stickel F, Kremer F and Fischer E W 1993 Phys. A 201 318
[34] Iacob C, Sangoro J R, Serghei A, Naumov S, Korth Y, Kärger J, Friedrich C and Kremer F 2008 J. Chem. Phys. 129 234511
[35] Havriliak S and Negami S 1967 Polymer 8 161
[36] Richert R 2010 J. Chem. Phys. 133 74502
[37] Wang J, Zhao K S and Wu L X 2014 J. Chem. Phys. 141 54502
[38] Ishai P B, Talary M S, Caduff A, Levy E and Feldman Y 2013 Meas. Sci. Technol. 24 102001
[39] Nielsen A I, Christensen T, Jakobsen B, Niss K, Olsen N B, Richert R and Dyre J C 2009 J. Chem. Phys. 130 154508
[40] Bergman R, Svanberg C, Andersson D, Brodin A and Torell L M 1998 J. Non-Cryst. Solids 235 225
[41] Köhler M, Lunkenheimer P, Goncharov Y, Wehn R and Loidl A 2010 J. Non-Cryst. Solids 356 529
[42] León C, Ngai K L, Rol and C M 1999 J. Chem. Phys. 110 11585
[43] Maggi C, Jakobsen B, Christensen T, Olsen N B and Dyre J C 2008 J. Phys. Chem. B 112 16320
[44] Meier R, Kahlau R, Kruk D and Rössler E A 2010 J. Phys. Chem. A 114 7847
[45] Dienes G J and Klemm H F 1946 J. Appl. Phys. 17 458
[46] Bakke E, Busch R and Johnson W L 1996 Mater. Sci. Forum 225-227 95
[47] Wilson S J and Poole D 1990 Mat. Res. Bull. 25 113
[48] Gao J, Zhao Y S, Shi S Q and Li H 2016 Chin. Phys. B 25 18211
[49] Isard J O 1999 J. Non-Cryst. Solids 246 16
[1] Non-monotonic temperature evolution of nonlocal structure-dynamics correlation in CuZr glass-forming liquids
W J Jiang(江文杰) and M Z Li(李茂枝). Chin. Phys. B, 2021, 30(7): 076102.
[2] Structure, conductivity, and ion emission properties of RbAg4I5 solid electrolyte film prepared by pulsed laser deposition
Jun-Lian Chen(陈军联), Wen-Bin Zuo(左文彬), Xian-Wen Ke(柯贤文), Alexander B Tolstoguzov, Can-Xin Tian(田灿鑫), Neena Devi, Ranjana Jha, Gennady N Panin, De-Jun Fu(付德君). Chin. Phys. B, 2019, 28(6): 060705.
[3] Interfacial transport in lithium-ion conductors
Shaofei Wang(王少飞) and Liquan Chen(陈立泉). Chin. Phys. B, 2016, 25(1): 018202.
[4] Lithium-ion transport in inorganic solid state electrolyte
Jian Gao(高健), Yu-Sheng Zhao(赵予生), Si-Qi Shi(施思齐), Hong Li(李泓). Chin. Phys. B, 2016, 25(1): 018211.
[5] Densification and lithium ion conductivity of garnet-type Li7-xLa3Zr2-xTaxO12 (x=0.25) solid electrolytes
Cao Yang (曹阳), Li Yi-Qiu (李忆秋), Guo Xiang-Xin (郭向欣). Chin. Phys. B, 2013, 22(7): 078201.
[6] Ionic conductivity study on electron beam irradiated polyacrylonitrile–polyethylene oxide gel
Ma Yi-Zhun (马艺准), Pang Li-Long(庞立龙), Zhu Ya-Bin(朱亚滨), Wang Zhi-Guang(王志光), and Shen Tie-Long(申铁龙) . Chin. Phys. B, 2011, 20(7): 078104.
No Suggested Reading articles found!