Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(8): 086501    DOI: 10.1088/1674-1056/28/8/086501
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Effects of surface charges on phonon properties and thermal conductivity in GaN nanofilms

Shu-Sen Yang(杨树森)1,2, Yang Hou(侯阳)1, Lin-Li Zhu(朱林利)1
1 Department of Engineering Mechanics, and Key Laboratory of Soft Machines and Smart Devices of Zhejiang Province, Zhejiang University, Hangzhou 310027, China;
2 School of Naval Architecture and Ocean Engineering, Jiangsu University of Science and Technology, Zhenjiang 212000, China
Abstract  

Surface charges can modify the elastic modulus of nanostructure, leading to the change of the phonon and thermal properties in semiconductor nanostructure. In this work, the influence of surface charges on the phonon properties and phonon thermal conductivity of GaN nanofilm are quantitatively investigated. In the framework of continuum mechanics, the modified elastic modulus can be derived for the nanofilm with surface charges. The elastic model is presented to analyze the phonon properties such as the phonon dispersion relation, phonon group velocity, density of states of phonons in nanofilm with the surface charges. The phonon thermal conductivity of nanofilm can be obtained by considering surface charges. The simulation results demonstrate that surface charges can significantly change the phonon properties and thermal conductivity in a GaN nanofilm. Positive surface charges reduce the phonon energy and phonon group velocity but increase the density of states of phonons. The surface charges can change the size and temperature dependence of phonon thermal conductivity of GaN nanofilm. Based on these theoretical results, one can adjust the phonon properties and temperature/size dependent thermal conductivity in GaN nanofilm by changing the surface charges.

Keywords:  surface charges      GaN nanofilm      elastic model      phonon properties      thermal conductivity  
Received:  22 May 2019      Revised:  16 June 2019      Accepted manuscript online: 
PACS:  65.80.-g (Thermal properties of small particles, nanocrystals, nanotubes, and other related systems)  
  63.22.-m (Phonons or vibrational states in low-dimensional structures and nanoscale materials)  
  43.35.Gk (Phonons in crystal lattices, quantum acoustics)  
  44.10.+i (Heat conduction)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos. 11772294, 11621062, and 11302189) and the Fundamental Research Funds for the Central Universities, China (Grant No. 2017QNA4031).

Corresponding Authors:  Lin-Li Zhu     E-mail:  llzhu@zju.edu.cn

Cite this article: 

Shu-Sen Yang(杨树森), Yang Hou(侯阳), Lin-Li Zhu(朱林利) Effects of surface charges on phonon properties and thermal conductivity in GaN nanofilms 2019 Chin. Phys. B 28 086501

[40] Weigend F, Evers F and Weissmüller J 2006 Small 2 1497
[1] Balandin A A, Pokatilov E P and Nika D L 2007 J. Nanoelectron. Optoelectron. 2 140
[41] Umeno Y, Elsässer C, Meyer B, Gumbsch P, Nothacker M, Weissmüller J and Evers F 2007 Europhys. Lett. 78 13001
[2] Tian Z T, Lee S and Chen G 2013 ASME J. Heat Transfer 135 061605
[42] Zheng X J and Zhu L L 2006 Appl. Phys. Lett. 89 153110
[3] Park A H, Seo T H, Chandramohan S, Lee G H, Min K H, Lee S, Kim M J, Hwang Y G, Suh E K 2015 Nanoscale 7 15099
[43] Zhu L L and Zheng X J 2008 Europhys. Lett. 83 66007
[4] Zhou C Q, Ai Q, Chen X, Gao X H, Liu K W and Shen D Z 2019 Chin. Phys. B 28 048503
[44] Zhu L L and Zheng X J 2010 Euro. J. Mech. A-Solids 29 337
[5] Cahill D G, Ford W K, Goodson K E, Mahan G D, Majumdar A, Maris H J, Merlin R and Phillpot S R 2003 J. Appl. Phys. 93 793
[45] Ben X and Park H 2014 Nanotechnology 25 455704
[6] Tong X C 2011 Advanced Materials for Thermal Management of Electronic Packaging (Springer) p. 39
[46] Lin J T, Shuvra P D, McNamara S, Gong H, Liao W, Davidson J L, Walsh K M, Alles M L and Alphenaar B W 2017 Phys. Rev. Appl. 8 034013
[7] Cocemasov A I, Isacova C I and Nika D L 2018 Chin. Phys. B 27 056301
[47] Dingreville R, Qu J and Cherkaoui M 2005 J. Mech. Phys. Solids 53 1827
[8] Rowe D 2006 Thermoelectrics handbook: macro to nano (CRC Press: Boca Raton FL)
[48] Zhu L L and Zheng X J 2009 Europhys. Lett. 88 36003
[9] Nika D L, Pokatilov E P, Balandin A A, Fomin V M and Schmidt O G 2011 Phys. Rev. B 84 165415
[49] Zhu L L and Ruan H H 2014 ASME J. Heat Transfer 136 102402
[10] Guo Y and Wang M 2015 Phys. Rep. 595 1
[50] Luo H N and Zhu L L 2015 J. Appl. Mech. 82 111002
[11] Song E, Li Q, Swartzentruber B, Pan W, Wang G T and Martinez J A 2016 Nanotechnology 27 015204
[51] Wang J, Zhu L and Yin W 2018 Comput. Mater. Sci. 145 14
[12] Du B S, Jian J K, Liu H T, Liu J and Qiao L 2018 Chin. Phys. B 27 048102
[52] Tang X Y, Wang J C, Zhu L L and Yin W Y 2019 Mater. Res. Express 6 015018
[13] Balandin A A 2005 J. Nanosci. Nanotechnol. 5 1015
[53] Bhatt A R, Kim K W, Stroscio M A and Higman J M 1993 Phys. Rev. B 48 14671
[14] Wang Z G, Zu X T, Gao F, Weber W J and Crocombette J P 2007 Appl. Phys. Lett. 90 161923
[54] Bannov N, AristovV V, MitinV V and Stroscio M A 1995 Phys. Rev. B 51 9930
[15] Guthy C, Nam C Y and Fischer J E 2008 J. Appl. Phys. 103 064319
[55] Zou J, Lange X and Richardson C 2006 J. Appl. Phys. 100 89
[16] Zou J 2010 J. Appl. Phys. 108 034324
[17] Majumdar A 1993 ASME J. Heat Transfer 115 7
[18] Chen G 1998 Phys. Rev. B 57 14958
[19] Zheng X J, Zhu L L, Zhou Y H and Zhang Q J 2005 Appl. Phys. Lett. 87 242101
[20] Zhou G and Li L L 2012 J. Appl. Phys. 112 014317
[21] Hou Y and Zhu L L 2016 Chin. Phy. B 25 086502
[22] Abramson R, Tien C L and Majumdar A 2002 ASME J. Heat Transfer 124 963
[23] AlShaikhi A, Barman S and Srivastava G P 2010 Phys. Rev. B 81 195320
[24] Lindsay L, Broido D A and Reinecke T L 2012 Phys. Rev. Lett. 109 095901
[25] Jiang Y Q, Cai S, Tao Y, Wei Z Y, Bi K D and Chen Y F 2017 Compt. Mater. Sci. 138 419
[26] Du H, Liu S J, Li G L, Li L B, Liu X S and Liu B B 2019 Chin. Phys. B 28 016105
[27] Martin P, Aksamija Z, Pop E and Ravaioli U 2009 Phys. Rev. Lett. 102 125503
[28] Hua Y C and Cao B Y 2016 Int. J. Therm. Sci. 101 126
[29] Zhu L L, Tang X Y, Wang J C and Hou Y 2019 AIP Adv. 9 015024
[30] Chowdhury R, Scarpa F and Adhikari S 2012 J. Appl. Phys. 112 014905
[31] Vitushinsky R, Crego-Calama M, Brongersma S H and Offermans P 2013 Appl. Phys. Lett. 102 172101
[32] Bousoulas P, Giannopoulos J, Giannakopoulos K, Dimitrakis P and Tsoukalas D 2015 Appl. Surf. Sci. 332 55
[33] Sun W, Tan C K and Tansu N 2017 Sci. Rep. 7 11826
[34] Husain A, Hone J, Postma H W C, Huang X M H, Drake T, Barbic M, Scherer A and Roukes M L 2003 Appl. Phys. Lett. 83 1240
[35] Fan D L, Zhu F Q, Cammarata R C and Chien C L 2005 Phys. Rev. Lett. 94 247208
[36] van Beek J T M and Puers R 2012 J. Micromech. Microeng. 22 013001
[37] Zhang Y H, Mei Z X, Liang H L and Du X L 2017 Chin. Phys. B 26 047307
[38] Zhang Y C, Wang Z Z, Guo R, Liu G, Bao W M, Zhang J C and Hao Y 2019 Chin. Phys. B 28 018102
[39] Nichols R J, Nouar T, Lucas C A, Haiss W and Hofer W A 2002 Surf. Sci. 513 263
[40] Weigend F, Evers F and Weissmüller J 2006 Small 2 1497
[41] Umeno Y, Elsässer C, Meyer B, Gumbsch P, Nothacker M, Weissmüller J and Evers F 2007 Europhys. Lett. 78 13001
[42] Zheng X J and Zhu L L 2006 Appl. Phys. Lett. 89 153110
[43] Zhu L L and Zheng X J 2008 Europhys. Lett. 83 66007
[44] Zhu L L and Zheng X J 2010 Euro. J. Mech. A-Solids 29 337
[45] Ben X and Park H 2014 Nanotechnology 25 455704
[46] Lin J T, Shuvra P D, McNamara S, Gong H, Liao W, Davidson J L, Walsh K M, Alles M L and Alphenaar B W 2017 Phys. Rev. Appl. 8 034013
[47] Dingreville R, Qu J and Cherkaoui M 2005 J. Mech. Phys. Solids 53 1827
[48] Zhu L L and Zheng X J 2009 Europhys. Lett. 88 36003
[49] Zhu L L and Ruan H H 2014 ASME J. Heat Transfer 136 102402
[50] Luo H N and Zhu L L 2015 J. Appl. Mech. 82 111002
[51] Wang J, Zhu L and Yin W 2018 Comput. Mater. Sci. 145 14
[52] Tang X Y, Wang J C, Zhu L L and Yin W Y 2019 Mater. Res. Express 6 015018
[53] Bhatt A R, Kim K W, Stroscio M A and Higman J M 1993 Phys. Rev. B 48 14671
[54] Bannov N, AristovV V, MitinV V and Stroscio M A 1995 Phys. Rev. B 51 9930
[55] Zou J, Lange X and Richardson C 2006 J. Appl. Phys. 100 89
[1] Prediction of lattice thermal conductivity with two-stage interpretable machine learning
Jinlong Hu(胡锦龙), Yuting Zuo(左钰婷), Yuzhou Hao(郝昱州), Guoyu Shu(舒国钰), Yang Wang(王洋), Minxuan Feng(冯敏轩), Xuejie Li(李雪洁), Xiaoying Wang(王晓莹), Jun Sun(孙军), Xiangdong Ding(丁向东), Zhibin Gao(高志斌), Guimei Zhu(朱桂妹), Baowen Li(李保文). Chin. Phys. B, 2023, 32(4): 046301.
[2] Effects of phonon bandgap on phonon-phonon scattering in ultrahigh thermal conductivity θ-phase TaN
Chao Wu(吴超), Chenhan Liu(刘晨晗). Chin. Phys. B, 2023, 32(4): 046502.
[3] Modeling of thermal conductivity for disordered carbon nanotube networks
Hao Yin(殷浩), Zhiguo Liu(刘治国), and Juekuan Yang(杨决宽). Chin. Phys. B, 2023, 32(4): 044401.
[4] Low-temperature heat transport of the zigzag spin-chain compound SrEr2O4
Liguo Chu(褚利国), Shuangkui Guang(光双魁), Haidong Zhou(周海东), Hong Zhu(朱弘), and Xuefeng Sun(孙学峰). Chin. Phys. B, 2022, 31(8): 087505.
[5] Investigating the thermal conductivity of materials by analyzing the temperature distribution in diamond anvils cell under high pressure
Caihong Jia(贾彩红), Min Cao(曹敏), Tingting Ji(冀婷婷), Dawei Jiang(蒋大伟), and Chunxiao Gao(高春晓). Chin. Phys. B, 2022, 31(4): 040701.
[6] Research status and performance optimization of medium-temperature thermoelectric material SnTe
Pan-Pan Peng(彭盼盼), Chao Wang(王超), Lan-Wei Li(李岚伟), Shu-Yao Li(李淑瑶), and Yan-Qun Chen(陈艳群). Chin. Phys. B, 2022, 31(4): 047307.
[7] Advances in thermoelectric (GeTe)x(AgSbTe2)100-x
Hongxia Liu(刘虹霞), Xinyue Zhang(张馨月), Wen Li(李文), and Yanzhong Pei(裴艳中). Chin. Phys. B, 2022, 31(4): 047401.
[8] Effect of carbon nanotubes addition on thermoelectric properties of Ca3Co4O9 ceramics
Ya-Nan Li(李亚男), Ping Wu(吴平), Shi-Ping Zhang(张师平), Yi-Li Pei(裴艺丽), Jin-Guang Yang(杨金光), Sen Chen(陈森), and Li Wang(王立). Chin. Phys. B, 2022, 31(4): 047203.
[9] Lattice thermal conduction in cadmium arsenide
R F Chinnappagoudra, M D Kamatagi, N R Patil, and N S Sankeshwar. Chin. Phys. B, 2022, 31(11): 116301.
[10] Unusual thermodynamics of low-energy phonons in the Dirac semimetal Cd3As2
Zhen Wang(王振), Hengcan Zhao(赵恒灿), Meng Lyu(吕孟), Junsen Xiang(项俊森), Qingxin Dong(董庆新), Genfu Chen(陈根富), Shuai Zhang(张帅), and Peijie Sun(孙培杰). Chin. Phys. B, 2022, 31(10): 106501.
[11] Accurate determination of anisotropic thermal conductivity for ultrathin composite film
Qiu-Hao Zhu(朱秋毫), Jing-Song Peng(彭景凇), Xiao Guo(郭潇), Ru-Xuan Zhang(张如轩), Lei Jiang(江雷), Qun-Feng Cheng(程群峰), and Wen-Jie Liang(梁文杰). Chin. Phys. B, 2022, 31(10): 108102.
[12] Probing thermal properties of vanadium dioxide thin films by time-domain thermoreflectance without metal film
Qing-Jian Lu(陆青鑑), Min Gao(高敏), Chang Lu(路畅), Fei Long(龙飞), Tai-Song Pan(潘泰松), and Yuan Lin(林媛). Chin. Phys. B, 2021, 30(9): 096801.
[13] Two-dimensional square-Au2S monolayer: A promising thermoelectric material with ultralow lattice thermal conductivity and high power factor
Wei Zhang(张伟), Xiao-Qiang Zhang(张晓强), Lei Liu(刘蕾), Zhao-Qi Wang(王朝棋), and Zhi-Guo Li(李治国). Chin. Phys. B, 2021, 30(7): 077405.
[14] Effect of deformation of diamond anvil and sample in diamond anvil cell on the thermal conductivity measurement
Caihong Jia(贾彩红), Dawei Jiang(蒋大伟), Min Cao(曹敏), Tingting Ji(冀婷婷), and Chunxiao Gao(高春晓). Chin. Phys. B, 2021, 30(12): 124702.
[15] Excellent thermoelectric performance predicted in Sb2Te with natural superlattice structure
Pei Zhang(张培), Tao Ouyang(欧阳滔), Chao Tang(唐超), Chaoyu He(何朝宇), Jin Li(李金), Chunxiao Zhang(张春小), and Jianxin Zhong(钟建新). Chin. Phys. B, 2021, 30(12): 128401.
No Suggested Reading articles found!