CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES |
Prev
Next
|
|
|
Effects of surface charges on phonon properties and thermal conductivity in GaN nanofilms |
Shu-Sen Yang(杨树森)1,2, Yang Hou(侯阳)1, Lin-Li Zhu(朱林利)1 |
1 Department of Engineering Mechanics, and Key Laboratory of Soft Machines and Smart Devices of Zhejiang Province, Zhejiang University, Hangzhou 310027, China;
2 School of Naval Architecture and Ocean Engineering, Jiangsu University of Science and Technology, Zhenjiang 212000, China |
|
|
Abstract Surface charges can modify the elastic modulus of nanostructure, leading to the change of the phonon and thermal properties in semiconductor nanostructure. In this work, the influence of surface charges on the phonon properties and phonon thermal conductivity of GaN nanofilm are quantitatively investigated. In the framework of continuum mechanics, the modified elastic modulus can be derived for the nanofilm with surface charges. The elastic model is presented to analyze the phonon properties such as the phonon dispersion relation, phonon group velocity, density of states of phonons in nanofilm with the surface charges. The phonon thermal conductivity of nanofilm can be obtained by considering surface charges. The simulation results demonstrate that surface charges can significantly change the phonon properties and thermal conductivity in a GaN nanofilm. Positive surface charges reduce the phonon energy and phonon group velocity but increase the density of states of phonons. The surface charges can change the size and temperature dependence of phonon thermal conductivity of GaN nanofilm. Based on these theoretical results, one can adjust the phonon properties and temperature/size dependent thermal conductivity in GaN nanofilm by changing the surface charges.
|
Received: 22 May 2019
Revised: 16 June 2019
Accepted manuscript online:
|
PACS:
|
65.80.-g
|
(Thermal properties of small particles, nanocrystals, nanotubes, and other related systems)
|
|
63.22.-m
|
(Phonons or vibrational states in low-dimensional structures and nanoscale materials)
|
|
43.35.Gk
|
(Phonons in crystal lattices, quantum acoustics)
|
|
44.10.+i
|
(Heat conduction)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11772294, 11621062, and 11302189) and the Fundamental Research Funds for the Central Universities, China (Grant No. 2017QNA4031). |
Corresponding Authors:
Lin-Li Zhu
E-mail: llzhu@zju.edu.cn
|
Cite this article:
Shu-Sen Yang(杨树森), Yang Hou(侯阳), Lin-Li Zhu(朱林利) Effects of surface charges on phonon properties and thermal conductivity in GaN nanofilms 2019 Chin. Phys. B 28 086501
|
[40] |
Weigend F, Evers F and Weissmüller J 2006 Small 2 1497
|
[1] |
Balandin A A, Pokatilov E P and Nika D L 2007 J. Nanoelectron. Optoelectron. 2 140
|
[41] |
Umeno Y, Elsässer C, Meyer B, Gumbsch P, Nothacker M, Weissmüller J and Evers F 2007 Europhys. Lett. 78 13001
|
[2] |
Tian Z T, Lee S and Chen G 2013 ASME J. Heat Transfer 135 061605
|
[42] |
Zheng X J and Zhu L L 2006 Appl. Phys. Lett. 89 153110
|
[3] |
Park A H, Seo T H, Chandramohan S, Lee G H, Min K H, Lee S, Kim M J, Hwang Y G, Suh E K 2015 Nanoscale 7 15099
|
[43] |
Zhu L L and Zheng X J 2008 Europhys. Lett. 83 66007
|
[4] |
Zhou C Q, Ai Q, Chen X, Gao X H, Liu K W and Shen D Z 2019 Chin. Phys. B 28 048503
|
[44] |
Zhu L L and Zheng X J 2010 Euro. J. Mech. A-Solids 29 337
|
[5] |
Cahill D G, Ford W K, Goodson K E, Mahan G D, Majumdar A, Maris H J, Merlin R and Phillpot S R 2003 J. Appl. Phys. 93 793
|
[45] |
Ben X and Park H 2014 Nanotechnology 25 455704
|
[6] |
Tong X C 2011 Advanced Materials for Thermal Management of Electronic Packaging (Springer) p. 39
|
[46] |
Lin J T, Shuvra P D, McNamara S, Gong H, Liao W, Davidson J L, Walsh K M, Alles M L and Alphenaar B W 2017 Phys. Rev. Appl. 8 034013
|
[7] |
Cocemasov A I, Isacova C I and Nika D L 2018 Chin. Phys. B 27 056301
|
[47] |
Dingreville R, Qu J and Cherkaoui M 2005 J. Mech. Phys. Solids 53 1827
|
[8] |
Rowe D 2006 Thermoelectrics handbook: macro to nano (CRC Press: Boca Raton FL)
|
[48] |
Zhu L L and Zheng X J 2009 Europhys. Lett. 88 36003
|
[9] |
Nika D L, Pokatilov E P, Balandin A A, Fomin V M and Schmidt O G 2011 Phys. Rev. B 84 165415
|
[49] |
Zhu L L and Ruan H H 2014 ASME J. Heat Transfer 136 102402
|
[10] |
Guo Y and Wang M 2015 Phys. Rep. 595 1
|
[50] |
Luo H N and Zhu L L 2015 J. Appl. Mech. 82 111002
|
[11] |
Song E, Li Q, Swartzentruber B, Pan W, Wang G T and Martinez J A 2016 Nanotechnology 27 015204
|
[51] |
Wang J, Zhu L and Yin W 2018 Comput. Mater. Sci. 145 14
|
[12] |
Du B S, Jian J K, Liu H T, Liu J and Qiao L 2018 Chin. Phys. B 27 048102
|
[52] |
Tang X Y, Wang J C, Zhu L L and Yin W Y 2019 Mater. Res. Express 6 015018
|
[13] |
Balandin A A 2005 J. Nanosci. Nanotechnol. 5 1015
|
[53] |
Bhatt A R, Kim K W, Stroscio M A and Higman J M 1993 Phys. Rev. B 48 14671
|
[14] |
Wang Z G, Zu X T, Gao F, Weber W J and Crocombette J P 2007 Appl. Phys. Lett. 90 161923
|
[54] |
Bannov N, AristovV V, MitinV V and Stroscio M A 1995 Phys. Rev. B 51 9930
|
[15] |
Guthy C, Nam C Y and Fischer J E 2008 J. Appl. Phys. 103 064319
|
[55] |
Zou J, Lange X and Richardson C 2006 J. Appl. Phys. 100 89
|
[16] |
Zou J 2010 J. Appl. Phys. 108 034324
|
[17] |
Majumdar A 1993 ASME J. Heat Transfer 115 7
|
[18] |
Chen G 1998 Phys. Rev. B 57 14958
|
[19] |
Zheng X J, Zhu L L, Zhou Y H and Zhang Q J 2005 Appl. Phys. Lett. 87 242101
|
[20] |
Zhou G and Li L L 2012 J. Appl. Phys. 112 014317
|
[21] |
Hou Y and Zhu L L 2016 Chin. Phy. B 25 086502
|
[22] |
Abramson R, Tien C L and Majumdar A 2002 ASME J. Heat Transfer 124 963
|
[23] |
AlShaikhi A, Barman S and Srivastava G P 2010 Phys. Rev. B 81 195320
|
[24] |
Lindsay L, Broido D A and Reinecke T L 2012 Phys. Rev. Lett. 109 095901
|
[25] |
Jiang Y Q, Cai S, Tao Y, Wei Z Y, Bi K D and Chen Y F 2017 Compt. Mater. Sci. 138 419
|
[26] |
Du H, Liu S J, Li G L, Li L B, Liu X S and Liu B B 2019 Chin. Phys. B 28 016105
|
[27] |
Martin P, Aksamija Z, Pop E and Ravaioli U 2009 Phys. Rev. Lett. 102 125503
|
[28] |
Hua Y C and Cao B Y 2016 Int. J. Therm. Sci. 101 126
|
[29] |
Zhu L L, Tang X Y, Wang J C and Hou Y 2019 AIP Adv. 9 015024
|
[30] |
Chowdhury R, Scarpa F and Adhikari S 2012 J. Appl. Phys. 112 014905
|
[31] |
Vitushinsky R, Crego-Calama M, Brongersma S H and Offermans P 2013 Appl. Phys. Lett. 102 172101
|
[32] |
Bousoulas P, Giannopoulos J, Giannakopoulos K, Dimitrakis P and Tsoukalas D 2015 Appl. Surf. Sci. 332 55
|
[33] |
Sun W, Tan C K and Tansu N 2017 Sci. Rep. 7 11826
|
[34] |
Husain A, Hone J, Postma H W C, Huang X M H, Drake T, Barbic M, Scherer A and Roukes M L 2003 Appl. Phys. Lett. 83 1240
|
[35] |
Fan D L, Zhu F Q, Cammarata R C and Chien C L 2005 Phys. Rev. Lett. 94 247208
|
[36] |
van Beek J T M and Puers R 2012 J. Micromech. Microeng. 22 013001
|
[37] |
Zhang Y H, Mei Z X, Liang H L and Du X L 2017 Chin. Phys. B 26 047307
|
[38] |
Zhang Y C, Wang Z Z, Guo R, Liu G, Bao W M, Zhang J C and Hao Y 2019 Chin. Phys. B 28 018102
|
[39] |
Nichols R J, Nouar T, Lucas C A, Haiss W and Hofer W A 2002 Surf. Sci. 513 263
|
[40] |
Weigend F, Evers F and Weissmüller J 2006 Small 2 1497
|
[41] |
Umeno Y, Elsässer C, Meyer B, Gumbsch P, Nothacker M, Weissmüller J and Evers F 2007 Europhys. Lett. 78 13001
|
[42] |
Zheng X J and Zhu L L 2006 Appl. Phys. Lett. 89 153110
|
[43] |
Zhu L L and Zheng X J 2008 Europhys. Lett. 83 66007
|
[44] |
Zhu L L and Zheng X J 2010 Euro. J. Mech. A-Solids 29 337
|
[45] |
Ben X and Park H 2014 Nanotechnology 25 455704
|
[46] |
Lin J T, Shuvra P D, McNamara S, Gong H, Liao W, Davidson J L, Walsh K M, Alles M L and Alphenaar B W 2017 Phys. Rev. Appl. 8 034013
|
[47] |
Dingreville R, Qu J and Cherkaoui M 2005 J. Mech. Phys. Solids 53 1827
|
[48] |
Zhu L L and Zheng X J 2009 Europhys. Lett. 88 36003
|
[49] |
Zhu L L and Ruan H H 2014 ASME J. Heat Transfer 136 102402
|
[50] |
Luo H N and Zhu L L 2015 J. Appl. Mech. 82 111002
|
[51] |
Wang J, Zhu L and Yin W 2018 Comput. Mater. Sci. 145 14
|
[52] |
Tang X Y, Wang J C, Zhu L L and Yin W Y 2019 Mater. Res. Express 6 015018
|
[53] |
Bhatt A R, Kim K W, Stroscio M A and Higman J M 1993 Phys. Rev. B 48 14671
|
[54] |
Bannov N, AristovV V, MitinV V and Stroscio M A 1995 Phys. Rev. B 51 9930
|
[55] |
Zou J, Lange X and Richardson C 2006 J. Appl. Phys. 100 89
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|