CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Time-dependent first-principles study of optical response of BaTiO3 quantum dots coupled with silver nanowires |
Bo-Xun Han(韩博逊)1, Hong Zhang(张红)1,2 |
1 College of Physical Science and Technology, Sichuan University, Chengdu 610065, China;
2 Key Laboratory of High Energy Density Physics and Technology(Ministry of Education), Sichuan University, Chengdu 610065, China |
|
|
Abstract All-inorganic perovskite quantum dots (QDs) have drawn much attention due to their prominent quantum-size effects and highly tunable optical properties. Tuning the size of perovskite QDs is attractive for many potential applications. For instance, smaller QDs exhibit more evident quantum properties than larger QDs, but present a blue-shifted spectrum, which limits their applications. Here, we conduct a systematically theoretical analysis about the optical response and plasmon resonance of comparatively small barium titanate quantum dots (BTO-QDs) coupled with silver (Ag) nanowires based on time-dependent density functional theory (TDDFT). Our results show that the silver nanowires can induce an intense optical response respectively in the infrared and visible region to eliminate the spectrum-shift. Furthermore, the absorption spectrum and plasmon resonance can be effectively modified by either altering the position of the silver nanowires or changing the thickness of the BTO-QDs. More importantly, these two methods can act simultaneously, this maybe provide a new approach to implementing the quantum control.
|
Received: 14 January 2019
Revised: 29 March 2019
Accepted manuscript online:
|
PACS:
|
73.20.Mf
|
(Collective excitations (including excitons, polarons, plasmons and other charge-density excitations))
|
|
73.21.-b
|
(Electron states and collective excitations in multilayers, quantum wells, mesoscopic, and nanoscale systems)
|
|
Fund: Project support by the National Key Research and Development Program of China (Grant No. 2017YFA0303600) and the National Natural Science Foundation of China (Grant No. 11474207). |
Corresponding Authors:
Hong Zhang
E-mail: hongzhang@scu.edu.cn
|
Cite this article:
Bo-Xun Han(韩博逊), Hong Zhang(张红) Time-dependent first-principles study of optical response of BaTiO3 quantum dots coupled with silver nanowires 2019 Chin. Phys. B 28 067301
|
[1] |
Maeda K, Teramura K, Lu D, Takata T, Saito N, Inoue Y and Domen K 2006 Nature 440 295
|
[2] |
L Michael M, Joël T, Tsutomu M, M Takurou N and S Henry J 2012 Science 338 643
|
[3] |
Julian B, Norman P, Soo-Jin M, Robin H B, Peng G, Nazeeruddin M K and Michael G T 2013 Nature 499 316
|
[4] |
Ilya G, Vincent W D, Maria T, Gaoyang G, Stein D M, Liyan W, Guannan C, Gallo E M, Akbashev A R and Davies P K 2013 Nature 503 509
|
[5] |
Yang F, Lin S, Yang L, Liao J, Chen Y and Wang C Z 2017 Mater. Res. Bull. 96
|
[6] |
Chen S and Shi G 2017 Adv. Mater. 29 1605448
|
[7] |
Li G, Tan Z K, Di D, Lai M L, Jiang L, Lim J H, Friend R H and Greenham N C 2015 Nano Lett. 15 2640
|
[8] |
Nechache R, Harnagea C, Li S, Cardenas L, Huang W, Chakrabartty J and Rosei F 2015 Nat. Photon. 9 61
|
[9] |
Wang F, Grinberg I, Jiang L, Young S M, Davies P K and Rappe A M 2015 Ferroelectrics 483 1
|
[10] |
Wang F, Young S M, Zheng F, Grinberg I and Rappe A M 2016 Nat. Commun. 7 10419
|
[11] |
Wan D Y, Zhao Y L, Cai Y, Asmara T C, Huang Z, Chen J Q, Hong J, Yin S M, Nelson C T, Motapothula M R, Yan B X, Xiang D, Chi X, Zheng H, Chen W, Xu R, Ariando, Rusydi A, Minor A M, Breese M B H, Sherburne M, Asta M, Xu Q H and Venkatesan T 2017 Nat. Commun. 8 15070
|
[12] |
Zhu T, Trevisanutto P E, Asmara T C, Xu L, Feng Y P and Rusydi A 2018 Phys. Rev. B 98 235115
|
[13] |
Khaledinasab A and Sabaeian M 2012 Appl. Opt. 51 4176
|
[14] |
Khaledi-Nasab A, Sabaeian M, Sahrai M and Fallahi V 2014 J. Opt. 16 055004
|
[15] |
And C B M, Kagan C R and Bawendi M G 2003 Ann. Rev. Mater. Sci. 30 545
|
[16] |
Ramírez H Y, Flórez J and Camacho S 2015 Phys. Chem. Chem. Phys. 17 23938
|
[17] |
Coe-Sullivan S, Steckel J S, Woo W K, Bawendi M G and Bulović V 2005 Adv. Funct. Mater. 15 1117
|
[18] |
Xu S, Dadlani A L, Acharya S, Schindler P and Prinz F B 2016 Appl. Surf. Sci. 367 500
|
[19] |
Gorbachev I A, Goryacheva I Y and Glukhovskoy E G 2016 Bionanoscience 6 1
|
[20] |
Lin J H, Zhang H, Zhang B F, Zhao J, Miyamoto Y and Cheng X L 2018 J. Phys. Chem. C 122 19992
|
[21] |
Song J, Li J, Li X, Xu L, Dong Y and Zeng H 2015 Adv. Mater. 27 7162
|
[22] |
Jeong-Hyeok I, Chang-Ryul L, Jin-Wook L, Sang-Won P and Nam-Gyu P 2011 Nanoscale 3 4088
|
[23] |
Zhang J R, Bai D L, Jin Z W, Bian H, Wang K, Sun J, Wang Q and Liu S Z 2018 Adv. Energy Mater. 8 9
|
[24] |
Fons R, Osterkryger A D, Stepanov P, Gautier E, Bleuse J, Gerard J M, Gregersen N and Claudon J 2018 Nano Lett. 18 6434
|
[25] |
Leschkies K S, Divakar R, Basu J, Enache-Pommer E, Boercker J E, Carter C B, Kortshagen U R, Norris D J and Aydil E S 2007 Nano Lett. 7 1793
|
[26] |
Mokkapati S, Beck F J, Waele R D, Polman A and Catchpole K R 2011 J. Phys. D: Appl. Phys. 44 185101
|
[27] |
Stubhan T, Krantz J, Li N, Guo F, Litzov I, Steidl M, Richter M, Matt G J and Brabec C J 2012 Sol. Energy Mater. Sol. Cells 107 248
|
[28] |
Marques M A L, Castro A, Bertsch G F and Rubio A 2003 Comput. Phys. Commun. 151 60
|
[29] |
Hartwigsen C, Goedecker S and Hutter J K 1998 Phys. Rev. B 58 3641
|
[30] |
Delin A, Fast L, Johansson B, Eriksson O and Wills J M 1998 Phys. Rev. B 58 4345
|
[31] |
Hermann and Raphaël P 1997 J. Phys. A: Math. Gen. 30 3967
|
[32] |
Lu C, Nakajima N and Maruyama H 2017 J. Phys.-Condens. Matter 29 045702
|
[33] |
Cupo A and Meunier V 2017 J. Phys.-Condens. Matter 29 283001
|
[34] |
Li X, Zhao J and Yang J 2013 Sci. Rep. 3 1858
|
[35] |
Matsuzawa N, Ishitani A, Dixon D A and Uda T 2001 J. Phys. Chem. A 105 4953
|
[36] |
Zhan C G, Dixon D A, Matsuzawa N N, Ishitani A and Uda T 2003 J. Fluor. Chem. 122 27
|
[37] |
Yang T C, Wei L J, Yao W C, Tso L P, Wen L T and Tsung L P 2012 Nano Lett. 12 1648
|
[38] |
Miller D A B, Chemla D S, Damen T C, Gossard A C, Wiegmann W, Wood T H and Burrus C A 1984 Phys. Rev. Lett. 53 2173
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|