Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(6): 067301    DOI: 10.1088/1674-1056/28/6/067301
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Time-dependent first-principles study of optical response of BaTiO3 quantum dots coupled with silver nanowires

Bo-Xun Han(韩博逊)1, Hong Zhang(张红)1,2
1 College of Physical Science and Technology, Sichuan University, Chengdu 610065, China;
2 Key Laboratory of High Energy Density Physics and Technology(Ministry of Education), Sichuan University, Chengdu 610065, China
Abstract  

All-inorganic perovskite quantum dots (QDs) have drawn much attention due to their prominent quantum-size effects and highly tunable optical properties. Tuning the size of perovskite QDs is attractive for many potential applications. For instance, smaller QDs exhibit more evident quantum properties than larger QDs, but present a blue-shifted spectrum, which limits their applications. Here, we conduct a systematically theoretical analysis about the optical response and plasmon resonance of comparatively small barium titanate quantum dots (BTO-QDs) coupled with silver (Ag) nanowires based on time-dependent density functional theory (TDDFT). Our results show that the silver nanowires can induce an intense optical response respectively in the infrared and visible region to eliminate the spectrum-shift. Furthermore, the absorption spectrum and plasmon resonance can be effectively modified by either altering the position of the silver nanowires or changing the thickness of the BTO-QDs. More importantly, these two methods can act simultaneously, this maybe provide a new approach to implementing the quantum control.

Keywords:  perovskite      QDs      TDDFT      plasmon resonance  
Received:  14 January 2019      Revised:  29 March 2019      Accepted manuscript online: 
PACS:  73.20.Mf (Collective excitations (including excitons, polarons, plasmons and other charge-density excitations))  
  73.21.-b (Electron states and collective excitations in multilayers, quantum wells, mesoscopic, and nanoscale systems)  
Fund: 

Project support by the National Key Research and Development Program of China (Grant No. 2017YFA0303600) and the National Natural Science Foundation of China (Grant No. 11474207).

Corresponding Authors:  Hong Zhang     E-mail:  hongzhang@scu.edu.cn

Cite this article: 

Bo-Xun Han(韩博逊), Hong Zhang(张红) Time-dependent first-principles study of optical response of BaTiO3 quantum dots coupled with silver nanowires 2019 Chin. Phys. B 28 067301

[1] Maeda K, Teramura K, Lu D, Takata T, Saito N, Inoue Y and Domen K 2006 Nature 440 295
[2] L Michael M, Joël T, Tsutomu M, M Takurou N and S Henry J 2012 Science 338 643
[3] Julian B, Norman P, Soo-Jin M, Robin H B, Peng G, Nazeeruddin M K and Michael G T 2013 Nature 499 316
[4] Ilya G, Vincent W D, Maria T, Gaoyang G, Stein D M, Liyan W, Guannan C, Gallo E M, Akbashev A R and Davies P K 2013 Nature 503 509
[5] Yang F, Lin S, Yang L, Liao J, Chen Y and Wang C Z 2017 Mater. Res. Bull. 96
[6] Chen S and Shi G 2017 Adv. Mater. 29 1605448
[7] Li G, Tan Z K, Di D, Lai M L, Jiang L, Lim J H, Friend R H and Greenham N C 2015 Nano Lett. 15 2640
[8] Nechache R, Harnagea C, Li S, Cardenas L, Huang W, Chakrabartty J and Rosei F 2015 Nat. Photon. 9 61
[9] Wang F, Grinberg I, Jiang L, Young S M, Davies P K and Rappe A M 2015 Ferroelectrics 483 1
[10] Wang F, Young S M, Zheng F, Grinberg I and Rappe A M 2016 Nat. Commun. 7 10419
[11] Wan D Y, Zhao Y L, Cai Y, Asmara T C, Huang Z, Chen J Q, Hong J, Yin S M, Nelson C T, Motapothula M R, Yan B X, Xiang D, Chi X, Zheng H, Chen W, Xu R, Ariando, Rusydi A, Minor A M, Breese M B H, Sherburne M, Asta M, Xu Q H and Venkatesan T 2017 Nat. Commun. 8 15070
[12] Zhu T, Trevisanutto P E, Asmara T C, Xu L, Feng Y P and Rusydi A 2018 Phys. Rev. B 98 235115
[13] Khaledinasab A and Sabaeian M 2012 Appl. Opt. 51 4176
[14] Khaledi-Nasab A, Sabaeian M, Sahrai M and Fallahi V 2014 J. Opt. 16 055004
[15] And C B M, Kagan C R and Bawendi M G 2003 Ann. Rev. Mater. Sci. 30 545
[16] Ramírez H Y, Flórez J and Camacho S 2015 Phys. Chem. Chem. Phys. 17 23938
[17] Coe-Sullivan S, Steckel J S, Woo W K, Bawendi M G and Bulović V 2005 Adv. Funct. Mater. 15 1117
[18] Xu S, Dadlani A L, Acharya S, Schindler P and Prinz F B 2016 Appl. Surf. Sci. 367 500
[19] Gorbachev I A, Goryacheva I Y and Glukhovskoy E G 2016 Bionanoscience 6 1
[20] Lin J H, Zhang H, Zhang B F, Zhao J, Miyamoto Y and Cheng X L 2018 J. Phys. Chem. C 122 19992
[21] Song J, Li J, Li X, Xu L, Dong Y and Zeng H 2015 Adv. Mater. 27 7162
[22] Jeong-Hyeok I, Chang-Ryul L, Jin-Wook L, Sang-Won P and Nam-Gyu P 2011 Nanoscale 3 4088
[23] Zhang J R, Bai D L, Jin Z W, Bian H, Wang K, Sun J, Wang Q and Liu S Z 2018 Adv. Energy Mater. 8 9
[24] Fons R, Osterkryger A D, Stepanov P, Gautier E, Bleuse J, Gerard J M, Gregersen N and Claudon J 2018 Nano Lett. 18 6434
[25] Leschkies K S, Divakar R, Basu J, Enache-Pommer E, Boercker J E, Carter C B, Kortshagen U R, Norris D J and Aydil E S 2007 Nano Lett. 7 1793
[26] Mokkapati S, Beck F J, Waele R D, Polman A and Catchpole K R 2011 J. Phys. D: Appl. Phys. 44 185101
[27] Stubhan T, Krantz J, Li N, Guo F, Litzov I, Steidl M, Richter M, Matt G J and Brabec C J 2012 Sol. Energy Mater. Sol. Cells 107 248
[28] Marques M A L, Castro A, Bertsch G F and Rubio A 2003 Comput. Phys. Commun. 151 60
[29] Hartwigsen C, Goedecker S and Hutter J K 1998 Phys. Rev. B 58 3641
[30] Delin A, Fast L, Johansson B, Eriksson O and Wills J M 1998 Phys. Rev. B 58 4345
[31] Hermann and Raphaël P 1997 J. Phys. A: Math. Gen. 30 3967
[32] Lu C, Nakajima N and Maruyama H 2017 J. Phys.-Condens. Matter 29 045702
[33] Cupo A and Meunier V 2017 J. Phys.-Condens. Matter 29 283001
[34] Li X, Zhao J and Yang J 2013 Sci. Rep. 3 1858
[35] Matsuzawa N, Ishitani A, Dixon D A and Uda T 2001 J. Phys. Chem. A 105 4953
[36] Zhan C G, Dixon D A, Matsuzawa N N, Ishitani A and Uda T 2003 J. Fluor. Chem. 122 27
[37] Yang T C, Wei L J, Yao W C, Tso L P, Wen L T and Tsung L P 2012 Nano Lett. 12 1648
[38] Miller D A B, Chemla D S, Damen T C, Gossard A C, Wiegmann W, Wood T H and Burrus C A 1984 Phys. Rev. Lett. 53 2173
[1] Electron beam pumping improves the conversion efficiency of low-frequency photons radiated by perovskite quantum dots
Peng Du(杜鹏), Yining Mu(母一宁), Hang Ren(任航), Idelfonso Tafur Monroy, Yan-Zheng Li(李彦正), Hai-Bo Fan(樊海波), Shuai Wang(王帅), Makram Ibrahim, and Dong Liang(梁栋). Chin. Phys. B, 2023, 32(4): 048704.
[2] Numerical simulation of a truncated cladding negative curvature fiber sensor based on the surface plasmon resonance effect
Zhichao Zhang(张志超), Jinhui Yuan(苑金辉), Shi Qiu(邱石), Guiyao Zhou(周桂耀), Xian Zhou(周娴), Binbin Yan(颜玢玢), Qiang Wu(吴强), Kuiru Wang(王葵如), and Xinzhu Sang(桑新柱). Chin. Phys. B, 2023, 32(3): 034208.
[3] Plasmonic hybridization properties in polyenes octatetraene molecules based on theoretical computation
Nan Gao(高楠), Guodong Zhu(朱国栋), Yingzhou Huang(黄映洲), and Yurui Fang(方蔚瑞). Chin. Phys. B, 2023, 32(3): 037102.
[4] Fiber cladding dual channel surface plasmon resonance sensor based on S-type fiber
Yong Wei(魏勇), Xiaoling Zhao(赵晓玲), Chunlan Liu(刘春兰), Rui Wang(王锐), Tianci Jiang(蒋天赐), Lingling Li(李玲玲), Chen Shi(石晨), Chunbiao Liu(刘纯彪), and Dong Zhu(竺栋). Chin. Phys. B, 2023, 32(3): 030702.
[5] Effects of π-conjugation-substitution on ESIPT process for oxazoline-substituted hydroxyfluorenes
Di Wang(汪迪), Qiao Zhou(周悄), Qiang Wei(魏强), and Peng Song(宋朋). Chin. Phys. B, 2023, 32(2): 028201.
[6] Dual-channel fiber-optic surface plasmon resonance sensor with cascaded coaxial dual-waveguide D-type structure and microsphere structure
Ling-Ling Li(李玲玲), Yong Wei(魏勇), Chun-Lan Liu(刘春兰), Zhuo Ren(任卓), Ai Zhou(周爱), Zhi-Hai Liu(刘志海), and Yu Zhang(张羽). Chin. Phys. B, 2023, 32(2): 020702.
[7] Ion migration in metal halide perovskite QLEDs and its inhibition
Yuhui Dong(董宇辉), Danni Yan(严丹妮), Shuai Yang(杨帅), Naiwei Wei(魏乃炜),Yousheng Zou(邹友生), and Haibo Zeng(曾海波). Chin. Phys. B, 2023, 32(1): 018507.
[8] Optical simulation of CsPbI3/TOPCon tandem solar cells with advanced light management
Min Yue(岳敏), Yan Wang(王燕), Hui-Li Liang(梁会力), and Zeng-Xia Mei (梅增霞). Chin. Phys. B, 2022, 31(8): 088801.
[9] Improving efficiency of inverted perovskite solar cells via ethanolamine-doped PEDOT:PSS as hole transport layer
Zi-Jun Wang(王子君), Jia-Wen Li(李嘉文), Da-Yong Zhang(张大勇), Gen-Jie Yang(杨根杰), and Jun-Sheng Yu(于军胜). Chin. Phys. B, 2022, 31(8): 087802.
[10] Numerical study of a highly sensitive surface plasmon resonance sensor based on circular-lattice holey fiber
Jian-Fei Liao(廖健飞), Dao-Ming Lu(卢道明), Li-Jun Chen(陈丽军), and Tian-Ye Huang(黄田野). Chin. Phys. B, 2022, 31(6): 060701.
[11] Evaluation of performance of machine learning methods in mining structure—property data of halide perovskite materials
Ruoting Zhao(赵若廷), Bangyu Xing(邢邦昱), Huimin Mu(穆慧敏), Yuhao Fu(付钰豪), and Lijun Zhang(张立军). Chin. Phys. B, 2022, 31(5): 056302.
[12] Ferroelectric Ba0.75Sr0.25TiO3 tunable charge transfer in perovskite devices
Zi-Xuan Chen(陈子轩), Jia-Lin Sun(孙家林), Qiang Zhang(张强), Chong-Xin Qian(钱崇鑫), Ming-Zi Wang(王明梓), and Hong-Jian Feng(冯宏剑). Chin. Phys. B, 2022, 31(5): 057202.
[13] Stability and luminescence properties of CsPbBr3/CdSe/Al core-shell quantum dots
Heng Yao(姚恒), Anjiang Lu(陆安江), Zhongchen Bai(白忠臣), Jinguo Jiang(蒋劲国), and Shuijie Qin(秦水介). Chin. Phys. B, 2022, 31(4): 046106.
[14] Insights into the adsorption of water and oxygen on the cubic CsPbBr3 surfaces: A first-principles study
Xin Zhang(张鑫), Ruge Quhe(屈贺如歌), and Ming Lei(雷鸣). Chin. Phys. B, 2022, 31(4): 046401.
[15] Theoretical study on the mechanism for the excited-state double proton transfer process of an asymmetric Schiff base ligand
Zhengran Wang(王正然), Qiao Zhou(周悄), Bifa Cao(曹必发), Bo Li(栗博), Lixia Zhu(朱丽霞), Xinglei Zhang(张星蕾), Hang Yin(尹航), and Ying Shi(石英). Chin. Phys. B, 2022, 31(4): 048202.
No Suggested Reading articles found!