Glow and pseudo-glow discharges in a surface discharge generator
Li Xue-Chen (李雪辰)ab, Dong Li-Fang (董丽芳)b, Wang Long (王龙)a
a Institute of Physics, Chinese Academy of Sciences, Beijing 100080, China; b College of Physics Science and Technology, Hebei University,Baoding 071002, China
Abstract The glow discharge in flowing argon at one atmospheric pressure is realized in a surface discharge generator. The discharge current presents one peak per half-cycle of the applied voltage. The duration of the discharge pulse is more than 1$\mu $s when the frequency of the applied voltage is 60kHz. For the glow discharge in argon, the power consumption increases with the increase of voltage or the decrease of gas pressure. This relation is explained qualitatively based on the theory of the Townsend breakdown mechanism. In contrast, the discharge current in one atmospheric pressure air gives many spikes in each half-cycle, and correspondingly this kind of discharge is called pseudo-glow discharge. Every current spike oscillates with high-frequency damping. The pseudo-glow discharge in one atmospheric pressure air might result from the streamer breakdown mechanism.
Received: 08 September 2004
Revised: 24 March 2005
Accepted manuscript online:
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.