Abstract The spatial distributions of the electron density and the mean electron energy of argon radio frequency (rf) glow discharge plasma in a plasma-enhanced chemical vapour deposition (PECVD) system have been investigated using an established movable Langmuir probe. The results indicate that in the axial direction the electron density tends to peak at midway between the two electrodes while the axial variation trend of mean electron energy is different from that of the electron density, the mean electron energy is high near the electrodes. And the mean electron energy near the cathode is much higher than that near the anode. This article focuses on the radial distribution of electron density and mean electron energy. A proposed theoretical model distribution agrees well with the experimental one: the electron density and the mean electron energy both increase from the centre of the glow to the edge of electrodes. This is useful for better understanding the discharge mechanism and searching for a better deposition condition to improve thin film quality.
Received: 26 December 2005
Revised: 03 March 2006
Accepted manuscript online:
Fund: Project supported by the State Key Development Program for Basic Research of China (Grant No G2000028208).
Cite this article:
Zhu Zu-Song (祝祖送), Lin Kui-Xun (林揆训), Lin Xuan-Ying (林璇英), Qiu Gui-Ming (邱桂明), Yu Yun-Peng (余云鹏), Luo Yi-Lin (罗以琳) Spatial distribution of electron characteristic in argon rf glow discharges 2006 Chinese Physics 15 969
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.