Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(1): 013301    DOI: 10.1088/1674-1056/24/1/013301
Special Issue: TOPICAL REVIEW — Ultrafast intense laser science
TOPICAL REVIEW—Ultrafast intense laser science Prev   Next  

Population inversion in fluorescing fragments of super-excited molecules inside an air filament

Huai-Liang  Xua, See Leang Chinb,
a State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, China;
b Department of Physics, Engineering Physics and Optics & Center for Optics, Photonics and Laser (COPL), Laval University, Québec, QC, G1V 0A6, Canada
Abstract  

An original idea is reviewed. When a molecule is pumped into a super-excited state, one of its decay channels is neutral dissociation. One or more of the neutral fragments will fluoresce. Hence, if a lower state of such fluorescing fragments was populated through other channels but with a lower probability, population inversion of the fluorescing fragments would be naturally realized. This idea seems to be validated, so far, by comparing published work on three hydrocarbon molecules, CH4, C2H2, C2H4, and water vapor, H2O. After super-excitation in a femtosecond laser filament in air mixed with these molecules, the fluorescence from the CH or OH fragments exhibits population inversion, i.e., amplified spontaneous emission was observed in the backscattering direction of the filament.

Keywords:  femtosecond filament      lasing      super-excited states  
Received:  03 June 2014      Revised:  25 November 2014      Accepted manuscript online: 
PACS:  33.80.Rv (Multiphoton ionization and excitation to highly excited states (e.g., Rydberg states))  
  42.65.Re (Ultrafast processes; optical pulse generation and pulse compression)  
  33.20.Xx (Spectra induced by strong-field or attosecond laser irradiation)  
Fund: 

Project supported by the Canada Research Chairs, the Natural Science and Engineering Research Council of Canada (NSERC), the FRQNT, the Canada Foundation for Innovation (CFI), the National Basic Research Program of China (Grant No. 2014CB921300), the National Natural Science Foundation of China (Grant No. 61235003), the Research Fund for the Doctoral Program of Higher Education of China, and the Scientific Research Foundation for Returned Scholars, Ministry of Education of China.

Corresponding Authors:  Huai-Liang Xu      E-mail:  huailiang@jlu.edu.cn

Cite this article: 

Huai-Liang Xu (徐淮良), See Leang Chin Population inversion in fluorescing fragments of super-excited molecules inside an air filament 2015 Chin. Phys. B 24 013301

[1] Hatano Y 1999 Phys. Rep. 313 109
[2] Odagiri T and Kouchi N 2010 Oscillator Strength Distribution of Molecules in the Gas Phase in the Vacuum Ultraviolet Range and Dynamics of Singly Inner-Valence Excited and Multiply Excited States as Superexcited States, in Charged Particle and Photon Interactions with Matter: Recent Advances, Applications, and Interfaces (ed. Hatano Y, Katsumura Y and Mozumder A) (Boca Raton: CRC Press) pp. 9-26
[3] Kong F, Luo Q, Xu H L, Sharifi M, Song D and Chin S L 2006 J. Chem. Phys. 125 133320
[4] Hosseini S, Azarm A, Daigle J F, Kamali Y and Chin S L 2014 Opt. Commun. 316 61
[5] Yuan S,Wang T, Teranishi Y, Sridharan A, Lin S H, Zeng H P and Chin S L 2013 Appl. Phys. Lett. 102 224102
[6] Chin S L 2010 Femtosecond Laser Filamentation (New York: Springer) p. 1
[7] Luo Q, Liu W and Chin S L 2003 Appl. Phys. B 76 337
[8] Dogariu A, Michael J B, Scully M O and Miles R B 2011 Science 331 442
[9] Yao J P, Zeng B, Xu H L, Li G H, Chu W, Ni J, Zhang H, Chin S L, Cheng Y and Xu Z Z 2011 Phys. Rev. A 84 051802
[10] Chu W, Li G, Xie H, Ni J, Yao J, Zeng B, Zhang H, Jing C, Xu H, Cheng Y and Xu Z 2014 Laser Phys. Lett. 11 015301
[11] Kartashov D, Ališauskas S, Baltuška A, Schmitt-Sody A, RoachWand Polynkin P 2013 Phys. Rev. A 88 041805
[12] Mitryukovskiy S, Liu Y, Ding P, Houard A and Mysyrowicz A 2014 Opt. Express 22 12750
[13] Xu H L, Azarm A, Bernhardt J, Kamali Y and Chin S L 2009 Chem. Phys. 360 171
[14] Chin S L, Xu H L, Cheng Y, Xu Z Z and Yamanouchi K 2013 Chin. Opt. Lett. 11 013201
[15] Xu H L, Daigle J F, Luo Q and Chin S L 2006 Appl. Phys. B 82 655
[16] Kong F and Chin S L 2008 Non-Coulomb Explosions of Molecules in Intense Laser Fields, in Progress in Ultrafast Intense Laser Science III (ed. Yamanouchi K, Chin S L, Agostini P and Ferrante G) (Berlin: Springer-Verlag) pp. 113-128
[17] Chin S L, Azarm A, Xu H L, Wang T J, Sharifi M and Talebpour A 2012 Experiments in Population Trapping in Atoms and Molecules by an Intense Short Laser Pulse, in Progress in Ultrafast Intense Laser Science VIII (ed. Yamanouchi K, Nisoli M and Hill III W T) (Heidelberg: Springer-Verlag) pp. 79-96
[18] Azarm A, Sharifi S M, Sridharan A, Hosseini S, Wang Q Q, Popov A M, Tikhonova O V, Volkova E A and Chin S L 2013 J. Phys.: Conf. Ser. 414 012015
[19] Fedorov M and Movsesian A M 1988 J. Phys. B 21 L155
[20] Bearda R A, Hemert M C and Dishoeck E F 1992 J. Chem. Phys. 97 8240
[21] Mebel A M and Lin S H Chem. Phys. 215 329
[22] Heck J R, Albert Z, Richard N and Chandler DW1996 J. Chem. Phys. 104 4019
[23] Wang J and Liu K 1998 J. Chem. Phys. 109 7105
[24] Welch A R and Judge D L 1972 J. Chem. Phys. 57 286
[25] Wang T, Xu H L, Daigle J F, Sridharan A, Yuan S and Chin S L 2012 Opt. Lett. 37 1706
[26] Lee L C 1980 J. Chem. Phys. 72 4334
[27] Dutuit O, Tabche-Fouhaile A, Nenner I, Frohlich H and Guyon P M 1985 J. Chem. Phys. 83 584
[28] Lee L C, Oren L, Phillips E and Judge D L 1978 J. Phys. B 11 47
[29] Mitsuke K 2002 J. Chem. Phys. 117 8334
[30] Azarm A, Xu H L, Kamali Y, Bernhardt J, Song D, Xia A, Teranishi Y, Lin S H, Kong F and Chin S L 2008 J. Phys. B 41 225601
[31] Song D, Azarm A, Kamali Y, Liu K, Xia A, Teranishi Y, Lin S, Kong F and Chin S L 2010 J. Phys. Chem. A 114 3087
[32] Liu K, Song D, Azarm A, Chin S L and Kong F 2010 Chin. J. Chem. Phys. 23 252
[33] Azarm A, Song D, Liu K, Hosseini S, Teranishi Y, Lin S H, Xia A, Kong F and Chin S L 2011 J. Phys. B 44 085601
[34] Strasser D, Haber L H, Doughty B and Leone S R 2008 Molecular Phys. 106 275
[1] Raman lasing and other nonlinear effects based on ultrahigh-Q CaF2 optical resonator
Tong Xing(邢彤), Enbo Xing(邢恩博), Tao Jia(贾涛), Jianglong Li(李江龙), Jiamin Rong(戎佳敏), Yanru Zhou(周彦汝), Wenyao Liu(刘文耀), Jun Tang(唐军), and Jun Liu(刘俊). Chin. Phys. B, 2022, 31(10): 104204.
[2] Random-injection-based two-channel chaos with enhanced bandwidth and suppressed time-delay signature by mutually coupled lasers: Proposal and numerical analysis
Shi-Rong Xu(许世蓉), Xin-Hong Jia (贾新鸿), Hui-Liang Ma(马辉亮), Jia-Bing Lin(林佳兵), Wen-Yan Liang(梁文燕), and Yu-Lian Yang(杨玉莲). Chin. Phys. B, 2021, 30(1): 014203.
[3] Observation of the optical X2Σg+-A2Πu coupling in N2+ lasing induced by intense laser field
Siqi Wang(王思琪), Yao Fu(付尧), Danwen Yao(姚丹雯), Shanming Chen(陈善铭), Wei Zhang(张维), Helong Li(李贺龙), Huailiang Xu(徐淮良). Chin. Phys. B, 2019, 28(12): 123301.
[4] Air lasing: Phenomena and mechanisms
Helong Li(李贺龙), Danwen Yao(姚丹雯), Siqi Wang(王思琪), Yao Fu(付尧), Huailiang Xu(徐淮良). Chin. Phys. B, 2019, 28(11): 114204.
[5] Theoretical study on the lasing plasmon of a split ring for label-free detection of single molecules and single nanoparticles
Chunjie Zheng(郑春杰), Tianqing Jia(贾天卿), Hua Zhao(赵华), Yingjie Xia(夏英杰), Shian Zhang(张诗按), Zhenrong Sun(孙真荣). Chin. Phys. B, 2018, 27(5): 057802.
[6] Lasing properties of a Yb ion in tetragonal LuPO4 and LuVO4 isomorphic crystals: A comparative study
Xiao-Dan Dou(窦晓丹), Jing-Nan Yang(杨婧男), Jie He(贺杰), Li-Sha Wang(王丽莎), Wen-Juan Han(韩文娟), Hong-Hao Xu(徐洪浩), De-Gao Zhong(钟德高), Bing Teng(滕冰), Jun-Hai Liu(刘均海). Chin. Phys. B, 2018, 27(5): 054210.
[7] Random lasing in dye-doped polymer dispersed liquid crystal film
Rina Wu(乌日娜), Rui-xin Shi(史瑞新), Xiaojiao Wu(邬小娇), Jie Wu(吴杰), Qin Dai(岱钦). Chin. Phys. B, 2016, 25(9): 094209.
[8] Bichromatic coherent random lasing from dye-doped polymer stabilized blue phase liquid crystals controlled by pump light polarization
Lei Wang(王雷), Meng Wang(王萌), Mingchao Yang(杨明朝), Li-Jie Shi(石丽洁), Luogen Deng(邓罗根 ), Huai Yang(杨槐). Chin. Phys. B, 2016, 25(9): 094217.
[9] Lasing dynamics study by femtosecond time-resolved fluorescence non-collinear optical parametric amplification spectroscopy
Wei Dang(党伟), Qing Liao(廖清), Peng-Cheng Mao(毛鹏程), Hong-Bing Fu(付红兵), Yu-Xiang Weng(翁羽翔). Chin. Phys. B, 2016, 25(5): 054207.
[10] Temperature-tunable lasing in negative dielectric chiral nematic liquid crystal
Wu Ri-Na (乌日娜), Wu Jie (吴杰), Wu Xiao-Jiao (邬小娇), Dai Qin (岱钦). Chin. Phys. B, 2015, 24(5): 054211.
[11] Comparative investigation of resistance and ability to trigger high voltage discharge for single and multiple femtosecond filaments in air
Guo Kai-Min (郭凯敏), Hao Zuo-Qiang (郝作强), Lin Jing-Quan (林景全), Sun Chang-Kai (孙长凯), Gao Xun (高勋), Zhao Zhen-Ming (赵振明). Chin. Phys. B, 2013, 22(3): 035203.
[12] Influence of Doppler broadening and spontaneously generated coherence on propagation effect in a quasi lambda-type four-level system
Liu Zhong-Bo(刘中波), Liang Ying(梁颖), Jia Ke-Ning(贾克宁), and Fan Xi-Jun(樊锡君) . Chin. Phys. B, 2012, 21(2): 024206.
[13] Lasing without inversion in a four-level diamond system
Gao Qiang (高强), Song Tong-Qiang (宋同强). Chin. Phys. B, 2012, 21(12): 124202.
[14] Phase modulation of propagation effect with Doppler broadening
Qiao Hong-Xia(乔红霞), Yang Yan-Ling(杨艳玲), Tan Xia(谭霞), Tong Dian-Min(仝殿民), and Fan Xi-Jun(樊锡君). Chin. Phys. B, 2008, 17(10): 3734-3738.
[15] Effect of spontaneously generated coherence on inversionless lasing gain in an atomic system with Doppler broadening
Ma Hui(马慧), Tan Xia(谭霞), Tian Shu-Fen(田淑芬), Tong Dian-Min(仝殿民), and Fan Xi-Jun(樊锡君). Chin. Phys. B, 2007, 16(8): 2400-2406.
No Suggested Reading articles found!