Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(5): 053403    DOI: 10.1088/1674-1056/23/5/053403
ATOMIC AND MOLECULAR PHYSICS Prev   Next  

Decay pathways of superexcited states of nitrous oxide

Lin Mei (林梅)a, Liu Ya-Wei (刘亚伟)a, Zhong Zhi-Ping (钟志萍)b, Zhu Lin-Fan (朱林繁)a
a Hefei National Laboratory for Physical Sciences at Microscale, Department of Modern Physics, University of Science and Technology of China, Hefei 230026, China;
b School of Physical Sciences, University of the Chinese Academy of Sciences, Beijing 100049, China
Abstract  The ionization and ionic dissociation of the superexcited state of N2O are studied by using electron energy loss spectroscopy and positive ion time-of-flight mass spectroscopy at different momentum transfers; that is, 0 and 0.23 a.u. (atomic unit). The transitions at 13.8 eV and 14.0 eV are reassigned as 3pπ (000) and 3pσ (000) converging to A2Σ+, respectively. The competition between the main decay pathways of superexcited states at different momentum transfers is revealed. It is found that 3dσ converging to C2Σ+ mainly decays into N2O+ while 4dσ can decay into both N2O+ and NO+.
Keywords:  ionization continuum      superexcited states      decay channel      nitrous oxide  
Received:  03 November 2013      Revised:  03 January 2014      Accepted manuscript online: 
PACS:  34.80.Gs (Molecular excitation and ionization)  
  32.70.Cs (Oscillator strengths, lifetimes, transition moments)  
  33.80.Eh (Autoionization, photoionization, and photodetachment)  
  33.20.Ni (Vacuum ultraviolet spectra)  
Fund: Project supported by the National Natural Science Foundation of China (Grants Nos. U1332204, 11274291, and 11074299), the National Basic Research Program of China (Grant No. 2010CB923301), the Specialized Research Fund for the Doctoral Program of Higher Education of China, and the Fundamental Research Funds for the Central Universities of Ministry of Education of China.
Corresponding Authors:  Zhu Lin-Fan     E-mail:  lfzhu@ustc.edu.cn
About author:  34.80.Gs; 32.70.Cs; 33.80.Eh; 33.20.Ni

Cite this article: 

Lin Mei (林梅), Liu Ya-Wei (刘亚伟), Zhong Zhi-Ping (钟志萍), Zhu Lin-Fan (朱林繁) Decay pathways of superexcited states of nitrous oxide 2014 Chin. Phys. B 23 053403

[1] Yung Y L, Wang W C and Lacis A A 1976 Geophys. Res. Lett. 3 619
[2] Crutzen P J 1971 J. Geophys. Res. 76 7311
[3] Dand M N, Balint-Kurti G G and Brown A 2005 J. Chem. Phys. 122 054305
[4] Cook G R, Metzger P H and Ogawa M 1968 J. Opt. Soc. Am. 58 129
[5] Lee L C, Carlson R W, Judge D L and Ogawa M 1973 J. Quant. Spectrosc. Radiat. Transfer. 13 1023
[6] Cole B E and Dexter R N 1978 J. Phys. B 11 1011
[7] Berkowitz J and Eland J H D 1977 J. Chem. Phys. 67 2740
[8] Shaw D A, Holland D M P, Macdonald M A, Hopkirk A, Hayes M A and Mcsweeney S M 1992 Chem. Phys. 163 387
[9] Shaw D A and Holland D M P 2008 J. Phys. B 41 145103
[10] Baer T, Guyon P M, Nenner I, Fouhaille A T, Botter R, Ferreira L F A, and Govers T R 1979 J. Chem. Phys. 70 1585
[11] Dehmer P M, Dehmer J L and Chupka W A 1980 J. Chem. Phys. 73 126
[12] Sokell E, Wills A A and Comer J 1996 J. Phys. B 29 3417
[13] Sokell E, Wills A A, Comer J and Hammond P 1997 J. Phys. B 30 2635
[14] Truesdale C M, Southworth S, Kobrin P H, Lindle D W and Shirley D A 1983 J. Chem. Phys. 78 7117
[15] Szarka M G and Wallace S C 1991 J. Chem. Phys. 95 2336
[16] Masuoka T and Mitani S 1989 J. Chem. Phys. 90 2651
[17] Shaw D A and Holland D M P 2008 Chem. Phys. 352 217
[18] Ukai M, Kameta K, Machida S, Kouchi N, Hatano Y and Tanaka K 1994 J. Chem. Phys. 101 5473
[19] Machida S, Ukai M, Kitajima M, Kameta K, Kouchi N, Hatano Y, Hayaishi T and Ito K 1997 J. Phys. Chem. A 101 656
[20] Kinmond E, Eland J H D and Karlsson L 1999 Int. J. Mass Spetrometry 185 437
[21] Richardviard M, Atabek O, Dutuit O and Guyon P M 1990 J. Chem. Phys. 93 8881
[22] Nenner I, Guyon P, Baer T and Govers T R 1980 J. Chem. Phys. 72 6587
[23] Hitchcock A P, Brion C E and van Der Wiel M J 1980 Chem. Phys. 45 461
[24] Chan W F, Cooper G and Brion C E 1994 Chem. Phys. 180 77
[25] Wang Y X, Zhu L F, Liu X J, Jiang X M, Yuan Z S, Yang T and Xu K Z 2001 Chin. J. Chem. Phys. 14 33 (in Chinese)
[26] Lee J S 1977 J. Chem. Phys. 67 3998
[27] England K, Reddish T and Comer J 1988 Chem. Phys. 119 435
[28] Dillon M A, DeMille D and Spence D 1987 J. Elect. Spectrosc. Relat. Phenom. 42 67
[29] Kilcoyne D A L, Nordholm S and Hush N S 1986 Chem. Phys. 107 225
[30] Velasco A M, Bustos E, Martin I and Lavin C 2001 Int. J. Quant. Chem. 84 70
[31] Martin I, Velasco A M, Lavin C, Olalla E and Bustos E 2001 Int. J. Quant. Chem. 85 345
[32] Bustos E, Velasco A M, Martin I and Lavin C 2002 J. Phys. Chem. A 106 35
[33] Lin M, Liu Y W, Zhong Z P and Zhu L F 2013 Chin. Phys. B 22 023404
[34] Wu S L, Zhong Z P, Feng R F, Xing S L, Yang B X and Xu K Z 1995 Phys. Rev. A 51 4494
[35] Liu X J, Zhu L F, Jiang X M, Yuan Z S and Cai B 2001 Rev. Sci. Instrum. 72 3357
[36] Wang Y Y, Sun J M and Zhu L F 2010 J. Chem. Phys. 132 124301
[37] Gallagher J W, Brion C E, Samson J A R and Langhoff P W 1988 J. Phys. Chem. Ref. Data. 17 9
[38] Liu X J, Zhu L F, Yuan Z S, Li W B, Cheng H D, Huang Y P, Zhong Z P, Xu K Z and Li J M 2003 Phys. Rev. Lett. 91 193203
[39] Cheng H D, Zhu L F, Yuan Z S, Liu X J, Sun J M, Jiang W C and Xu K Z 2005 Phys. Rev. A 72 012715
[40] Zhu L F, Yuan H, Jiang W C, Zhang F X, Yuan Z S, Cheng H D and Xu K Z 2007 Phys. Rev. A 75 032701
[41] Li W B, Zhu L F, Liu X J, Yuan Z S, Sun J M, Cheng H D, Zhong Z P and Xu K Z 2003 Phys. Rev. A 67 062708
[42] Zhong Z P, Feng R F, Xu K Z, Wu S L, Zhu L F, Zhang X J, Ji Q and Shi Q C 1997 Phys. Rev. A 55 1799
[43] Fan L L, Zhong Z P, Zhu L F, Liu X J, Yuan Z S, Sun J M and Xu K Z 2005 Phys. Rev. A 71 032704
[44] Chutjian A and Segal G A 1972 J. Chem. Phys. 57 3069
[45] Hopper D G 1978 J. Am. Chem. Soc. 100 1019
[1] Geometric structure of N2Oq+ (q = 5, 6) studied by Ne8+ ion-induced Coulomb explosion imaging
Xi Zhao(赵曦), Xu Shan(单旭), Xiaolong Zhu(朱小龙), Lei Chen(陈磊), Zhenjie Shen(沈镇捷), Wentian Feng(冯文天), Dalong Guo(郭大龙), Dongmei Zhao(赵冬梅), Ruitian Zhang(张瑞田), Yong Gao(高永), Zhongkui Huang(黄忠魁), Shaofeng Zhang(张少锋), Xinwen Ma(马新文), and Xiangjun Chen(陈向军). Chin. Phys. B, 2021, 30(11): 113302.
[2] Atmospheric N2O gas detection based on an inter-band cascade laser around 3.939 μm
Chun-Yan Sun(孙春艳), Yuan Cao(曹渊), Jia-Jin Chen(陈家金), Jing-Jing Wang(王静静), Gang Cheng(程刚), Gui-Shi Wang(王贵师), Xiao-Ming Gao(高晓明). Chin. Phys. B, 2020, 29(1): 010704.
[3] Effect of laser polarization on strong-field ionization and fragmentation of nitrous oxide molecules
Rui Wang(王瑞), Shi-Wen Zhang(张世文), Yang Liu(刘洋), Tian Sun(孙添), Hang Lv(吕航), Hai-Feng Xu(徐海峰). Chin. Phys. B, 2019, 28(5): 053301.
[4] Momentum transfer dependence behaviors of ionization and dissociation of oxygen
Lin Mei (林梅), Liu Ya-Wei (刘亚伟), Zhong Zhi-Ping (钟志萍), Zhu Lin-Fan (朱林繁). Chin. Phys. B, 2013, 22(2): 023404.
[5] Bending localization of nitrous oxide under anharmonicity and Fermi coupling: the dynamical potential approach
Zhang Chi(张弛), Fang Chao(房超) and Wu Guo-Zhen(吴国祯). Chin. Phys. B, 2010, 19(11): 110513.
No Suggested Reading articles found!