|
|
Decay pathways of superexcited states of nitrous oxide |
Lin Mei (林梅)a, Liu Ya-Wei (刘亚伟)a, Zhong Zhi-Ping (钟志萍)b, Zhu Lin-Fan (朱林繁)a |
a Hefei National Laboratory for Physical Sciences at Microscale, Department of Modern Physics, University of Science and Technology of China, Hefei 230026, China;
b School of Physical Sciences, University of the Chinese Academy of Sciences, Beijing 100049, China |
|
|
Abstract The ionization and ionic dissociation of the superexcited state of N2O are studied by using electron energy loss spectroscopy and positive ion time-of-flight mass spectroscopy at different momentum transfers; that is, 0 and 0.23 a.u. (atomic unit). The transitions at 13.8 eV and 14.0 eV are reassigned as 3pπ (000) and 3pσ (000) converging to A2Σ+, respectively. The competition between the main decay pathways of superexcited states at different momentum transfers is revealed. It is found that 3dσ converging to C2Σ+ mainly decays into N2O+ while 4dσ can decay into both N2O+ and NO+.
|
Received: 03 November 2013
Revised: 03 January 2014
Accepted manuscript online:
|
PACS:
|
34.80.Gs
|
(Molecular excitation and ionization)
|
|
32.70.Cs
|
(Oscillator strengths, lifetimes, transition moments)
|
|
33.80.Eh
|
(Autoionization, photoionization, and photodetachment)
|
|
33.20.Ni
|
(Vacuum ultraviolet spectra)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grants Nos. U1332204, 11274291, and 11074299), the National Basic Research Program of China (Grant No. 2010CB923301), the Specialized Research Fund for the Doctoral Program of Higher Education of China, and the Fundamental Research Funds for the Central Universities of Ministry of Education of China. |
Corresponding Authors:
Zhu Lin-Fan
E-mail: lfzhu@ustc.edu.cn
|
About author: 34.80.Gs; 32.70.Cs; 33.80.Eh; 33.20.Ni |
Cite this article:
Lin Mei (林梅), Liu Ya-Wei (刘亚伟), Zhong Zhi-Ping (钟志萍), Zhu Lin-Fan (朱林繁) Decay pathways of superexcited states of nitrous oxide 2014 Chin. Phys. B 23 053403
|
[1] |
Yung Y L, Wang W C and Lacis A A 1976 Geophys. Res. Lett. 3 619
|
[2] |
Crutzen P J 1971 J. Geophys. Res. 76 7311
|
[3] |
Dand M N, Balint-Kurti G G and Brown A 2005 J. Chem. Phys. 122 054305
|
[4] |
Cook G R, Metzger P H and Ogawa M 1968 J. Opt. Soc. Am. 58 129
|
[5] |
Lee L C, Carlson R W, Judge D L and Ogawa M 1973 J. Quant. Spectrosc. Radiat. Transfer. 13 1023
|
[6] |
Cole B E and Dexter R N 1978 J. Phys. B 11 1011
|
[7] |
Berkowitz J and Eland J H D 1977 J. Chem. Phys. 67 2740
|
[8] |
Shaw D A, Holland D M P, Macdonald M A, Hopkirk A, Hayes M A and Mcsweeney S M 1992 Chem. Phys. 163 387
|
[9] |
Shaw D A and Holland D M P 2008 J. Phys. B 41 145103
|
[10] |
Baer T, Guyon P M, Nenner I, Fouhaille A T, Botter R, Ferreira L F A, and Govers T R 1979 J. Chem. Phys. 70 1585
|
[11] |
Dehmer P M, Dehmer J L and Chupka W A 1980 J. Chem. Phys. 73 126
|
[12] |
Sokell E, Wills A A and Comer J 1996 J. Phys. B 29 3417
|
[13] |
Sokell E, Wills A A, Comer J and Hammond P 1997 J. Phys. B 30 2635
|
[14] |
Truesdale C M, Southworth S, Kobrin P H, Lindle D W and Shirley D A 1983 J. Chem. Phys. 78 7117
|
[15] |
Szarka M G and Wallace S C 1991 J. Chem. Phys. 95 2336
|
[16] |
Masuoka T and Mitani S 1989 J. Chem. Phys. 90 2651
|
[17] |
Shaw D A and Holland D M P 2008 Chem. Phys. 352 217
|
[18] |
Ukai M, Kameta K, Machida S, Kouchi N, Hatano Y and Tanaka K 1994 J. Chem. Phys. 101 5473
|
[19] |
Machida S, Ukai M, Kitajima M, Kameta K, Kouchi N, Hatano Y, Hayaishi T and Ito K 1997 J. Phys. Chem. A 101 656
|
[20] |
Kinmond E, Eland J H D and Karlsson L 1999 Int. J. Mass Spetrometry 185 437
|
[21] |
Richardviard M, Atabek O, Dutuit O and Guyon P M 1990 J. Chem. Phys. 93 8881
|
[22] |
Nenner I, Guyon P, Baer T and Govers T R 1980 J. Chem. Phys. 72 6587
|
[23] |
Hitchcock A P, Brion C E and van Der Wiel M J 1980 Chem. Phys. 45 461
|
[24] |
Chan W F, Cooper G and Brion C E 1994 Chem. Phys. 180 77
|
[25] |
Wang Y X, Zhu L F, Liu X J, Jiang X M, Yuan Z S, Yang T and Xu K Z 2001 Chin. J. Chem. Phys. 14 33 (in Chinese)
|
[26] |
Lee J S 1977 J. Chem. Phys. 67 3998
|
[27] |
England K, Reddish T and Comer J 1988 Chem. Phys. 119 435
|
[28] |
Dillon M A, DeMille D and Spence D 1987 J. Elect. Spectrosc. Relat. Phenom. 42 67
|
[29] |
Kilcoyne D A L, Nordholm S and Hush N S 1986 Chem. Phys. 107 225
|
[30] |
Velasco A M, Bustos E, Martin I and Lavin C 2001 Int. J. Quant. Chem. 84 70
|
[31] |
Martin I, Velasco A M, Lavin C, Olalla E and Bustos E 2001 Int. J. Quant. Chem. 85 345
|
[32] |
Bustos E, Velasco A M, Martin I and Lavin C 2002 J. Phys. Chem. A 106 35
|
[33] |
Lin M, Liu Y W, Zhong Z P and Zhu L F 2013 Chin. Phys. B 22 023404
|
[34] |
Wu S L, Zhong Z P, Feng R F, Xing S L, Yang B X and Xu K Z 1995 Phys. Rev. A 51 4494
|
[35] |
Liu X J, Zhu L F, Jiang X M, Yuan Z S and Cai B 2001 Rev. Sci. Instrum. 72 3357
|
[36] |
Wang Y Y, Sun J M and Zhu L F 2010 J. Chem. Phys. 132 124301
|
[37] |
Gallagher J W, Brion C E, Samson J A R and Langhoff P W 1988 J. Phys. Chem. Ref. Data. 17 9
|
[38] |
Liu X J, Zhu L F, Yuan Z S, Li W B, Cheng H D, Huang Y P, Zhong Z P, Xu K Z and Li J M 2003 Phys. Rev. Lett. 91 193203
|
[39] |
Cheng H D, Zhu L F, Yuan Z S, Liu X J, Sun J M, Jiang W C and Xu K Z 2005 Phys. Rev. A 72 012715
|
[40] |
Zhu L F, Yuan H, Jiang W C, Zhang F X, Yuan Z S, Cheng H D and Xu K Z 2007 Phys. Rev. A 75 032701
|
[41] |
Li W B, Zhu L F, Liu X J, Yuan Z S, Sun J M, Cheng H D, Zhong Z P and Xu K Z 2003 Phys. Rev. A 67 062708
|
[42] |
Zhong Z P, Feng R F, Xu K Z, Wu S L, Zhu L F, Zhang X J, Ji Q and Shi Q C 1997 Phys. Rev. A 55 1799
|
[43] |
Fan L L, Zhong Z P, Zhu L F, Liu X J, Yuan Z S, Sun J M and Xu K Z 2005 Phys. Rev. A 71 032704
|
[44] |
Chutjian A and Segal G A 1972 J. Chem. Phys. 57 3069
|
[45] |
Hopper D G 1978 J. Am. Chem. Soc. 100 1019
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|