CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
The structural, electronic, and optical properties of organic-inorganic mixed halide perovskites CH3NH3Pb(I1-y Xy)3 (X=Cl, Br) |
Miao Jiang(姜淼)1, Naihang Deng(邓乃航)1, Li Wang(王丽)1, Haiming Xie(谢海明),1,2, Yongqing Qiu(仇永清)1,2 |
1 Institute of Functional Material Chemistry, Faculty of Chemistry, Northeast Normal University, Changchun 130024, China; 2 National & Local United Engineering Laboratory for Power Battery, Faculty of Chemistry, Northeast Normal University, Changchun 130024, China |
|
|
Abstract Methylammmonium lead iodide perovskites (CH3NH3PbI3) have received wide attention due to their superior optoelectronic properties. We performed first-principles calculations to investigate the structural, electronic, and optical properties of mixed halide perovskites CH3NH3Pb(I1-yXy)3 (X=Cl, Br; y=0, 0.33, 0.67). Our results reveal the reduction of the lattice constants and dielectric constants and enhancement of band gaps with increasing doping concentration of Cl-/Br- at I-. Electronic structure calculations indicate that the valance band maximum (VBM) is mainly governed by the halide p orbitals and Pb 6s orbitals, Pb 6p orbitals contribute the conduction band minimum (CBM) and doping does not change the direct semiconductor material. The organic cation[CH3NH3]+ does not take part in the formation of the band and only one electron donates to the considered materials. The increasing trends of the band gap with Cl content from y=0 (0.793 eV) to y=0.33 (0.953 eV) then to y=0.67 (1.126 eV). The optical absorption of the considered structures in the visible spectrum range is decreased but after doping the stability of the material is improving.
|
Received: 04 January 2018
Revised: 03 April 2018
Accepted manuscript online:
|
PACS:
|
71.15.Mb
|
(Density functional theory, local density approximation, gradient and other corrections)
|
|
87.16.A-
|
(Theory, modeling, and simulations)
|
|
78.20.Ci
|
(Optical constants (including refractive index, complex dielectric constant, absorption, reflection and transmission coefficients, emissivity))
|
|
52.25.Mq
|
(Dielectric properties)
|
|
Fund: Project supported by the Financial Support from the "12th Five-Year" Science and Technology Research Project of the Education Department of Jilin Province (Grant No.[2016]494) and the National Natural Science Foundation of China (Grant No.21173035). |
Corresponding Authors:
Yongqing Qiu
E-mail: qiuyq466@nenu.edu.cn
|
Cite this article:
Miao Jiang(姜淼), Naihang Deng(邓乃航), Li Wang(王丽), Haiming Xie(谢海明), Yongqing Qiu(仇永清) The structural, electronic, and optical properties of organic-inorganic mixed halide perovskites CH3NH3Pb(I1-y Xy)3 (X=Cl, Br) 2018 Chin. Phys. B 27 067102
|
[1] |
Jiang M, Deng N H and Qiu Y Q 2016 Comput. Theor. Chem. 1095 112
|
[2] |
Uribe J I, Ramirez D, Osorio-Guillén J M, Osorio J and Jaramillo F 2016 J. Phys. Chem. C 120 16393
|
[3] |
Qian J Y, Xu B and Wen W J 2016 Org. Electron. 37 61
|
[4] |
Slotcavage D J, Karunadasa H I and McGehee M D 2016 ACS Energy Lett. 1 1199
|
[5] |
Brivio F, Caetano C and Walsh A 2016 J. Phys. Chem. Lett. 7 1083
|
[6] |
Geng W, Zhang L, Zhang Y N, Lau W M and Liu L M 2014 J. Phys. Chem. C 118 19565
|
[7] |
Hong F, Saparov B, Meng W W, Xiao Z W, Mitzi D B and Yan Y F 2016 J. Phys. Chem. C 120 6435
|
[8] |
Bechtel J S, Seshadri R and Van der Ven A 2016 J. Phys. Chem. C 120 12403
|
[9] |
Yan W L, Lu G H and Liu F 2016 J. Phys. Chem. C 120 17972
|
[10] |
Poglitsch A and Weber D 1987 J. Chem. Phys. 87 6373
|
[11] |
Ong K P, Goh T W, Xu Q and Huan A 2015 J. Phys. Chem. Lett. 6 681
|
[12] |
Nandi P, Giri C, Joseph B, Rath S, Manju U and Topwal D 2016 J. Phys. Chem. A 120 9732
|
[13] |
Carignano M A, Kachmar A and Hutter J 2015 J. Phys. Chem. C 119 8991
|
[14] |
Feng J and Xiao B 2014 J. Phys. Chem. Lett. 5 1278
|
[15] |
Zheng F, Takenaka H, Wang F G, Koocher N Z and Rappe A M 2015 J. Phys. Chem. Lett. 6 31
|
[16] |
Sadhanala A, Deschler F, Thomas T H, Dutton S E, Goedel K C, Hanusch F C, Lai M L, Steiner U, Bein T, Docampo P, Cahen D and Friend R H 2014 J. Phys. Chem. Lett. 5 2501
|
[17] |
Montero-Alejo A L, Menéndez-Proupin E, Hidalgo-Rojas D, Palacios P, Wahnón P and Conesa J C 2016 J. Phys. Chem. C 120 7976
|
[18] |
Filip M R, Verdi C and Giustino F 2015 J. Phys. Chem. C 119 25209
|
[19] |
Quarti C, Mosconi E, Umari P and De Angelis F 2017 Inorg. Chem. 56 74
|
[20] |
Zhao X G, Yang J H, Fu Y H, Yang D W, Xu Q L and Yu L P 2017 J. Am. Chem. Soc. 139 2630
|
[21] |
He J G, Franchini C and Rondinelli J M 2017 Chem. Mater. 29 2445
|
[22] |
Wang J F, Fu X N and Wang J T 2017 Chin. Phys. B 26 106301
|
[23] |
Qian J Y, Guo Q, Liu L J, Xu B and Tian W J 2017 J. Mater. Chem. A 5 16786
|
[24] |
Zhang Y Y, Chen S Y, Xu P, Xiang H J, Gong X G, Walsh A and Wei S H 2018 Chin. Phys. Lett. 35 036104
|
[25] |
Dang Y Y, Zhong C, Zhang G D, Ju D X, Wang L, Xia S Q, Xia H B and Tao X T 2016 Chem. Mater. 28 6968
|
[26] |
Kuang C Y, Tang G, Jiu T G, Yang H, Liu H B, Li B R, Luo W N, Li X D, Zhang W J, Lu F S, Fang J F and Li Y L 2015 Nano Lett. 15 2756
|
[27] |
Mancini A, Quadrelli P, Amoroso G, Milanese C, Boiocchi M, Sironi A, Patrini M, Guizzetti G and Malavasi L 2016 J. Solid State Chem. 240 55
|
[28] |
Park J S, Choi S, Yan Y, Yang Y, Luther J M, Wei S H, Parilla P and Zhu K 2015 J. Phys. Chem. Lett. 6 4304
|
[29] |
Kumawat N K, Tripathi M N, Waghmare U and Kabra D 2016 J. Phys. Chem. A 120 3917
|
[30] |
Stroppa A, Quarti C, De Angelis F and Picozzi S 2015 J. Phys. Chem. Lett. 6 2223
|
[31] |
Bernal C and Yang K S 2014 J. Phys. Chem. C 118 24383
|
[32] |
Tan Z K, Moghaddam R S, Lai M L, Docampo P, Higler R, Deschler F, Price M, Sadhanala A, Pazos L M, Credgington D, Hanusch F, Bein T, Snaith H J and Friend R H 2014 Nat. Nanotechnol. 9 687
|
[33] |
Xiao L, Xu J, Luan J C, Zhang B, Tan Z A and Yao J X 2017 Org. Electron. 50 33
|
[34] |
Wu L J, Zhao Y Q, Chen C W, Wang L Z, Liu B and Cai M Q 2016 Chin. Phys. B 25 107202
|
[35] |
Sun P, Yu W W, Pan X H, Wei W, Sun Y, Yuan N Y, Ding J N, Zhao W C, Chen X and Dai N 2017 Chin. Phys. Lett. 34 096801
|
[36] |
Yan H J, Ku Z L, Hu X F, Zhao W Y, Zhong M J, Zhu Q B, Lin X, Jin Z M and Ma G H 2018 Chin. Phys. Lett. 35 028401
|
[37] |
Jacobsson T J, Pazoki M, Hagfeldt A and Edvinsson T 2015 J. Phys. Chem. C 119 25673
|
[38] |
Mancini A, Quadrelli P, Milanese C, Patrini M, Guizzetti G and Malavasi L 2015 Inorg. Chem. 54 8893
|
[39] |
He Y P and Galli G 2017 Chem. Mater. 29 682
|
[40] |
Dar M I, Abdi-Jalebi M, Arora N, Moehl T, Grätzel M and Nazeeruddin M K 2015 Adv. Mater. 27 7221
|
[41] |
Zhang M, Yu H, Lyu M Q, Wang Q, Yun J H and Wang L Z 2014 Chem. Commun. 50 11727
|
[42] |
Mosconi E, Amat A, Nazeeruddin M K, Grätzel M and Angelis F D 2013 J. Phys. Chem. C 117 13902
|
[43] |
Noh J H, Im S H, Heo J H, Mandal T N and Seok S I 2013 Nano Lett. 13 1764
|
[44] |
Baikie T, Fang Y A, Kadro J M, Schreyer M, Wei F X, Mhaisalkar S G, Graetzel M and White T J 2013 J. Mater. Chem. A 1 5628
|
[45] |
Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169
|
[46] |
Kresse G and Furthmuller J 1996 Comput. Mater. Sci. 6 15
|
[47] |
Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
|
[48] |
Blöchl P E 1994 Phys. Rev. B 50 17953
|
[49] |
Blöchl P E, Jepsen O and Andersen O K 1994 Phys. Rev. B 49 16223
|
[50] |
Momma K and Izumi F 2008 J. Appl. Cryst. 41 653
|
[51] |
Maalej A, Abid Y, Kallel A, Daoud A, Lautie A and Romain F 1997 Solid State Commun. 103 279
|
[52] |
Kawamura Y, Mashiyama H and Hasebe K 2002 J. Phys. Soc. Jpn. 71 1694
|
[53] |
Even J, Pedesseau L, Jancu J and Katan C 2013 J. Phys. Chem. Lett. 4 2999
|
[54] |
Giorgi G, Fujisawa J, Segawa H and Yamashita K 2013 J. Phys. Chem. Lett. 4 4213
|
[55] |
Feng J, Xiao B, Chen J C, Zhou C T, Du Y P and Zhou R 2009 Solid State Commun. 149 1569
|
[56] |
Feng J, Xiao B, Pan W, Jiang Y H and Zhou R 2013 Appl. Phys. Lett. 103 013902
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|