Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(6): 067102    DOI: 10.1088/1674-1056/27/6/067102
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

The structural, electronic, and optical properties of organic-inorganic mixed halide perovskites CH3NH3Pb(I1-y Xy)3 (X=Cl, Br)

Miao Jiang(姜淼)1, Naihang Deng(邓乃航)1, Li Wang(王丽)1, Haiming Xie(谢海明),1,2, Yongqing Qiu(仇永清)1,2
1 Institute of Functional Material Chemistry, Faculty of Chemistry, Northeast Normal University, Changchun 130024, China;
2 National & Local United Engineering Laboratory for Power Battery, Faculty of Chemistry, Northeast Normal University, Changchun 130024, China
Abstract  Methylammmonium lead iodide perovskites (CH3NH3PbI3) have received wide attention due to their superior optoelectronic properties. We performed first-principles calculations to investigate the structural, electronic, and optical properties of mixed halide perovskites CH3NH3Pb(I1-yXy)3 (X=Cl, Br; y=0, 0.33, 0.67). Our results reveal the reduction of the lattice constants and dielectric constants and enhancement of band gaps with increasing doping concentration of Cl-/Br- at I-. Electronic structure calculations indicate that the valance band maximum (VBM) is mainly governed by the halide p orbitals and Pb 6s orbitals, Pb 6p orbitals contribute the conduction band minimum (CBM) and doping does not change the direct semiconductor material. The organic cation[CH3NH3]+ does not take part in the formation of the band and only one electron donates to the considered materials. The increasing trends of the band gap with Cl content from y=0 (0.793 eV) to y=0.33 (0.953 eV) then to y=0.67 (1.126 eV). The optical absorption of the considered structures in the visible spectrum range is decreased but after doping the stability of the material is improving.
Keywords:  density functional theory      organic-inorganic perovskite      doping      absorption efficiency  
Received:  04 January 2018      Revised:  03 April 2018      Accepted manuscript online: 
PACS:  71.15.Mb (Density functional theory, local density approximation, gradient and other corrections)  
  87.16.A- (Theory, modeling, and simulations)  
  78.20.Ci (Optical constants (including refractive index, complex dielectric constant, absorption, reflection and transmission coefficients, emissivity))  
  52.25.Mq (Dielectric properties)  
Fund: Project supported by the Financial Support from the "12th Five-Year" Science and Technology Research Project of the Education Department of Jilin Province (Grant No.[2016]494) and the National Natural Science Foundation of China (Grant No.21173035).
Corresponding Authors:  Yongqing Qiu     E-mail:  qiuyq466@nenu.edu.cn

Cite this article: 

Miao Jiang(姜淼), Naihang Deng(邓乃航), Li Wang(王丽), Haiming Xie(谢海明), Yongqing Qiu(仇永清) The structural, electronic, and optical properties of organic-inorganic mixed halide perovskites CH3NH3Pb(I1-y Xy)3 (X=Cl, Br) 2018 Chin. Phys. B 27 067102

[1] Jiang M, Deng N H and Qiu Y Q 2016 Comput. Theor. Chem. 1095 112
[2] Uribe J I, Ramirez D, Osorio-Guillén J M, Osorio J and Jaramillo F 2016 J. Phys. Chem. C 120 16393
[3] Qian J Y, Xu B and Wen W J 2016 Org. Electron. 37 61
[4] Slotcavage D J, Karunadasa H I and McGehee M D 2016 ACS Energy Lett. 1 1199
[5] Brivio F, Caetano C and Walsh A 2016 J. Phys. Chem. Lett. 7 1083
[6] Geng W, Zhang L, Zhang Y N, Lau W M and Liu L M 2014 J. Phys. Chem. C 118 19565
[7] Hong F, Saparov B, Meng W W, Xiao Z W, Mitzi D B and Yan Y F 2016 J. Phys. Chem. C 120 6435
[8] Bechtel J S, Seshadri R and Van der Ven A 2016 J. Phys. Chem. C 120 12403
[9] Yan W L, Lu G H and Liu F 2016 J. Phys. Chem. C 120 17972
[10] Poglitsch A and Weber D 1987 J. Chem. Phys. 87 6373
[11] Ong K P, Goh T W, Xu Q and Huan A 2015 J. Phys. Chem. Lett. 6 681
[12] Nandi P, Giri C, Joseph B, Rath S, Manju U and Topwal D 2016 J. Phys. Chem. A 120 9732
[13] Carignano M A, Kachmar A and Hutter J 2015 J. Phys. Chem. C 119 8991
[14] Feng J and Xiao B 2014 J. Phys. Chem. Lett. 5 1278
[15] Zheng F, Takenaka H, Wang F G, Koocher N Z and Rappe A M 2015 J. Phys. Chem. Lett. 6 31
[16] Sadhanala A, Deschler F, Thomas T H, Dutton S E, Goedel K C, Hanusch F C, Lai M L, Steiner U, Bein T, Docampo P, Cahen D and Friend R H 2014 J. Phys. Chem. Lett. 5 2501
[17] Montero-Alejo A L, Menéndez-Proupin E, Hidalgo-Rojas D, Palacios P, Wahnón P and Conesa J C 2016 J. Phys. Chem. C 120 7976
[18] Filip M R, Verdi C and Giustino F 2015 J. Phys. Chem. C 119 25209
[19] Quarti C, Mosconi E, Umari P and De Angelis F 2017 Inorg. Chem. 56 74
[20] Zhao X G, Yang J H, Fu Y H, Yang D W, Xu Q L and Yu L P 2017 J. Am. Chem. Soc. 139 2630
[21] He J G, Franchini C and Rondinelli J M 2017 Chem. Mater. 29 2445
[22] Wang J F, Fu X N and Wang J T 2017 Chin. Phys. B 26 106301
[23] Qian J Y, Guo Q, Liu L J, Xu B and Tian W J 2017 J. Mater. Chem. A 5 16786
[24] Zhang Y Y, Chen S Y, Xu P, Xiang H J, Gong X G, Walsh A and Wei S H 2018 Chin. Phys. Lett. 35 036104
[25] Dang Y Y, Zhong C, Zhang G D, Ju D X, Wang L, Xia S Q, Xia H B and Tao X T 2016 Chem. Mater. 28 6968
[26] Kuang C Y, Tang G, Jiu T G, Yang H, Liu H B, Li B R, Luo W N, Li X D, Zhang W J, Lu F S, Fang J F and Li Y L 2015 Nano Lett. 15 2756
[27] Mancini A, Quadrelli P, Amoroso G, Milanese C, Boiocchi M, Sironi A, Patrini M, Guizzetti G and Malavasi L 2016 J. Solid State Chem. 240 55
[28] Park J S, Choi S, Yan Y, Yang Y, Luther J M, Wei S H, Parilla P and Zhu K 2015 J. Phys. Chem. Lett. 6 4304
[29] Kumawat N K, Tripathi M N, Waghmare U and Kabra D 2016 J. Phys. Chem. A 120 3917
[30] Stroppa A, Quarti C, De Angelis F and Picozzi S 2015 J. Phys. Chem. Lett. 6 2223
[31] Bernal C and Yang K S 2014 J. Phys. Chem. C 118 24383
[32] Tan Z K, Moghaddam R S, Lai M L, Docampo P, Higler R, Deschler F, Price M, Sadhanala A, Pazos L M, Credgington D, Hanusch F, Bein T, Snaith H J and Friend R H 2014 Nat. Nanotechnol. 9 687
[33] Xiao L, Xu J, Luan J C, Zhang B, Tan Z A and Yao J X 2017 Org. Electron. 50 33
[34] Wu L J, Zhao Y Q, Chen C W, Wang L Z, Liu B and Cai M Q 2016 Chin. Phys. B 25 107202
[35] Sun P, Yu W W, Pan X H, Wei W, Sun Y, Yuan N Y, Ding J N, Zhao W C, Chen X and Dai N 2017 Chin. Phys. Lett. 34 096801
[36] Yan H J, Ku Z L, Hu X F, Zhao W Y, Zhong M J, Zhu Q B, Lin X, Jin Z M and Ma G H 2018 Chin. Phys. Lett. 35 028401
[37] Jacobsson T J, Pazoki M, Hagfeldt A and Edvinsson T 2015 J. Phys. Chem. C 119 25673
[38] Mancini A, Quadrelli P, Milanese C, Patrini M, Guizzetti G and Malavasi L 2015 Inorg. Chem. 54 8893
[39] He Y P and Galli G 2017 Chem. Mater. 29 682
[40] Dar M I, Abdi-Jalebi M, Arora N, Moehl T, Grätzel M and Nazeeruddin M K 2015 Adv. Mater. 27 7221
[41] Zhang M, Yu H, Lyu M Q, Wang Q, Yun J H and Wang L Z 2014 Chem. Commun. 50 11727
[42] Mosconi E, Amat A, Nazeeruddin M K, Grätzel M and Angelis F D 2013 J. Phys. Chem. C 117 13902
[43] Noh J H, Im S H, Heo J H, Mandal T N and Seok S I 2013 Nano Lett. 13 1764
[44] Baikie T, Fang Y A, Kadro J M, Schreyer M, Wei F X, Mhaisalkar S G, Graetzel M and White T J 2013 J. Mater. Chem. A 1 5628
[45] Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169
[46] Kresse G and Furthmuller J 1996 Comput. Mater. Sci. 6 15
[47] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[48] Blöchl P E 1994 Phys. Rev. B 50 17953
[49] Blöchl P E, Jepsen O and Andersen O K 1994 Phys. Rev. B 49 16223
[50] Momma K and Izumi F 2008 J. Appl. Cryst. 41 653
[51] Maalej A, Abid Y, Kallel A, Daoud A, Lautie A and Romain F 1997 Solid State Commun. 103 279
[52] Kawamura Y, Mashiyama H and Hasebe K 2002 J. Phys. Soc. Jpn. 71 1694
[53] Even J, Pedesseau L, Jancu J and Katan C 2013 J. Phys. Chem. Lett. 4 2999
[54] Giorgi G, Fujisawa J, Segawa H and Yamashita K 2013 J. Phys. Chem. Lett. 4 4213
[55] Feng J, Xiao B, Chen J C, Zhou C T, Du Y P and Zhou R 2009 Solid State Commun. 149 1569
[56] Feng J, Xiao B, Pan W, Jiang Y H and Zhou R 2013 Appl. Phys. Lett. 103 013902
[1] Predicting novel atomic structure of the lowest-energy FenP13-n(n=0-13) clusters: A new parameter for characterizing chemical stability
Yuanqi Jiang(蒋元祺), Ping Peng(彭平). Chin. Phys. B, 2023, 32(4): 047102.
[2] A theoretical study of fragmentation dynamics of water dimer by proton impact
Zhi-Ping Wang(王志萍), Xue-Fen Xu(许雪芬), Feng-Shou Zhang(张丰收), and Xu Wang(王旭). Chin. Phys. B, 2023, 32(3): 033401.
[3] Plasmonic hybridization properties in polyenes octatetraene molecules based on theoretical computation
Nan Gao(高楠), Guodong Zhu(朱国栋), Yingzhou Huang(黄映洲), and Yurui Fang(方蔚瑞). Chin. Phys. B, 2023, 32(3): 037102.
[4] Ferroelectricity induced by the absorption of water molecules on double helix SnIP
Dan Liu(刘聃), Ran Wei(魏冉), Lin Han(韩琳), Chen Zhu(朱琛), and Shuai Dong(董帅). Chin. Phys. B, 2023, 32(3): 037701.
[5] Suppression and compensation effect of oxygen on the behavior of heavily boron-doped diamond films
Li-Cai Hao(郝礼才), Zi-Ang Chen(陈子昂), Dong-Yang Liu(刘东阳), Wei-Kang Zhao(赵伟康),Ming Zhang(张鸣), Kun Tang(汤琨), Shun-Ming Zhu(朱顺明), Jian-Dong Ye(叶建东),Rong Zhang(张荣), You-Dou Zheng(郑有炓), and Shu-Lin Gu(顾书林). Chin. Phys. B, 2023, 32(3): 038101.
[6] Effects of π-conjugation-substitution on ESIPT process for oxazoline-substituted hydroxyfluorenes
Di Wang(汪迪), Qiao Zhou(周悄), Qiang Wei(魏强), and Peng Song(宋朋). Chin. Phys. B, 2023, 32(2): 028201.
[7] A novel monoclinic phase and electrically tunable magnetism of van der Waals layered magnet CrTe2
Qidi Ren(任启迪), Kang Lai(赖康), Jiahao Chen(陈家浩), Xiaoxiang Yu(余晓翔), and Jiayu Dai(戴佳钰). Chin. Phys. B, 2023, 32(2): 027201.
[8] Bismuth doping enhanced tunability of strain-controlled magnetic anisotropy in epitaxial Y3Fe5O12(111) films
Yunpeng Jia(贾云鹏), Zhengguo Liang(梁正国), Haolin Pan(潘昊霖), Qing Wang(王庆), Qiming Lv(吕崎鸣), Yifei Yan(严轶非), Feng Jin(金锋), Dazhi Hou(侯达之), Lingfei Wang(王凌飞), and Wenbin Wu(吴文彬). Chin. Phys. B, 2023, 32(2): 027501.
[9] High-order harmonic generation of the cyclo[18]carbon molecule irradiated by circularly polarized laser pulse
Shu-Shan Zhou(周书山), Yu-Jun Yang(杨玉军), Yang Yang(杨扬), Ming-Yue Suo(索明月), Dong-Yuan Li(李东垣), Yue Qiao(乔月), Hai-Ying Yuan(袁海颖), Wen-Di Lan(蓝文迪), and Mu-Hong Hu(胡木宏). Chin. Phys. B, 2023, 32(1): 013201.
[10] Slight Co-doping tuned magnetic and electric properties on cubic BaFeO3 single crystal
Shijun Qin(覃湜俊), Bowen Zhou(周博文), Zhehong Liu(刘哲宏), Xubin Ye(叶旭斌), Xueqiang Zhang(张雪强), Zhao Pan(潘昭), and Youwen Long(龙有文). Chin. Phys. B, 2022, 31(9): 097503.
[11] High-quality CdS quantum dots sensitized ZnO nanotube array films for superior photoelectrochemical performance
Qian-Qian Gong(宫倩倩), Yun-Long Zhao(赵云龙), Qi Zhang(张奇), Chun-Yong Hu(胡春永), Teng-Fei Liu(刘腾飞), Hai-Feng Zhang(张海峰), Guang-Chao Yin(尹广超), and Mei-Ling Sun(孙美玲). Chin. Phys. B, 2022, 31(9): 098103.
[12] Broadband chirped InAs quantum-dot superluminescent diodes with a small spectral dip of 0.2 dB
Hong Wang(王虹), Zunren Lv(吕尊仁), Shuai Wang(汪帅), Haomiao Wang(王浩淼), Hongyu Chai(柴宏宇), Xiaoguang Yang(杨晓光), Lei Meng(孟磊), Chen Ji(吉晨), and Tao Yang(杨涛). Chin. Phys. B, 2022, 31(9): 098104.
[13] Designing a P2-type cathode material with Li in both Na and transition metal layers for Na-ion batteries
Jianxiang Gao(高健翔), Kai Sun(孙凯), Hao Guo(郭浩), Zhengyao Li(李正耀), Jianlin Wang(王建林), Xiaobai Ma(马小柏), Xuedong Bai(白雪东), and Dongfeng Chen(陈东风). Chin. Phys. B, 2022, 31(9): 098201.
[14] First-principles study of a new BP2 two-dimensional material
Zhizheng Gu(顾志政), Shuang Yu(于爽), Zhirong Xu(徐知荣), Qi Wang(王琪), Tianxiang Duan(段天祥), Xinxin Wang(王鑫鑫), Shijie Liu(刘世杰), Hui Wang(王辉), and Hui Du(杜慧). Chin. Phys. B, 2022, 31(8): 086107.
[15] Adaptive semi-empirical model for non-contact atomic force microscopy
Xi Chen(陈曦), Jun-Kai Tong(童君开), and Zhi-Xin Hu(胡智鑫). Chin. Phys. B, 2022, 31(8): 088202.
No Suggested Reading articles found!