Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(6): 066108    DOI: 10.1088/1674-1056/27/6/066108
RAPID COMMUNICATION Prev   Next  

Impressive self-healing phenomenon of Cu2ZnSn(S, Se)4 solar cells

Qing Yu(于晴)1,2, Jiangjian Shi(石将建)1, Pengpeng Zhang(张朋朋)1,2, Linbao Guo(郭林宝)1,2, Xue Min(闵雪)1,2, Yanhong Luo(罗艳红)1,2, Huijue Wu(吴会觉)1, Dongmei Li(李冬梅)1,2, Qingbo Meng(孟庆波)1,2
1 CAS Key Laboratory for Renewable Energy, Beijing Key Laboratory for New Energy Materials and Devices, Institute of Physics, Chinese Academy of Sciences(CAS), Beijing 100190, China;
2 School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
Abstract  

A study of the self-healing phenomenon of Cu2ZnSn(S, Se)4 (CZTSSe) solar cells has shown more than 10% enhancement in cell performance after storage at room temperature for a week, with a significant improvement in the open-circuit photovoltage (Voc) and fill factor (FF). In addition, up to 10.45% power conversion efficiency (PCE) has been achieved. No obvious change in crystallinity, crystal phase, optical absorption or elemental distribution in the CZTSSe films was detected on examining the x-ray diffraction (XRD) pattern, Raman spectrum, ultraviolet-visible (UV-Vis), and TOF-SIMS. Further investigations on the charge carrier concentration, charge radiative recombination, and band structure suggest that the enhancement in PCE stems mainly from a reduction in deep defects of the CZTSSe semiconductor film.

Keywords:  Cu2ZnSn(SSe)4      defects reduction      self-healing  
Received:  04 May 2018      Revised:  11 May 2018      Accepted manuscript online: 
PACS:  61.72.-y (Defects and impurities in crystals; microstructure)  
  61.66.Fn (Inorganic compounds)  
  61.72.Bb (Theories and models of crystal defects)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos.91733301,51761145042,91433205,11474333,51421002,51627803,and 51572288) and the International Partnership Program of the Chinese Academy of Sciences (Grant No.112111KYSB20170089).

Corresponding Authors:  Dongmei Li, Qingbo Meng     E-mail:  dmli@iphy.ac.cn;qbmeng@iphy.ac.cn

Cite this article: 

Qing Yu(于晴), Jiangjian Shi(石将建), Pengpeng Zhang(张朋朋), Linbao Guo(郭林宝), Xue Min(闵雪), Yanhong Luo(罗艳红), Huijue Wu(吴会觉), Dongmei Li(李冬梅), Qingbo Meng(孟庆波) Impressive self-healing phenomenon of Cu2ZnSn(S, Se)4 solar cells 2018 Chin. Phys. B 27 066108

[1] Polizzotti A, Repins I L, Noufi R, Wei S H and Mitzi D B 2013 Energy Environ. Sci. 6 3171
[2] Walsh A, Chen S, Wei S H and Gong X G 2012 Adv. Energy Mater. 2 400
[3] Mitzi D B, Gunawan O, Todorov T K, Wang K and Guha S 2011 Sol. Energy Mater. Sol. Cells 95 1421
[4] Liu D, Han D, Huang M, Zhang X, Zhang T, Dai C and Chen S 2018 Chin. Phys. B. 27 018806
[5] Altamura G and Vidal J 2016 Chem. Mater. 28 3540
[6] Chen S, Walsh A, Gong X G and Wei S H 2013 Adv. Mater. 25 1522
[7] Wang W, Winkler M T, Gunawan O, Gokmen T, Todorov T K, Zhu Y and Mitzi D B 2014 Adv. Energy Mater. 4 1301465
[8] Jackson P, Wuerz R, Hariskos D, Lotter E, Witte W and Powalla M 2016 Phys. Status Solidi Rapid Res. Lett. 10 583
[9] Min X, Shi J J, Guo L B, Yu Q, Zhang P P, Tian Q W, Li D M, Luo Y H, Wu H J, Meng Q B and Wu S X 2018 Chin. Phys. B 27 016402
[10] Hlaing Oo W M, Johnson J L, Bhatia A, Lund E A, Nowell M M and Scarpulla M A 2011 J. Electron. Mater. 40 2214
[11] Prabhakar T and Jampana N 2011 Sol. Energy Mater. Sol. Cells 95 1001
[12] Li J B, Chawla V and Clemens B M 2012 Adv. Mater. 24 720
[13] López-Marino S, Sánchez Y, Espíndola-Rodríguez M, Alcobé X, Xie H, Neuschitzer M, Becerril I, Giraldo S, Dimitrievska M, Placidi M, Fourdrinier L, Izquierdo-Roca V, Pérez-Rodríguez A and Saucedo E 2016 J. Mater. Chem. A 4 1895
[14] Xin H, Vorpahl S M, Collord A D, Braly I L, Uhl A R, Krueger B W, Ginger D S and Hillhouse H W 2015 Phys. Chem. Chem. Phys. 17 23859
[15] Chen F S, Sung J C, Yang C Y and Lu C H 2015 J. Nanomater. 2015 579510
[16] Dullweber T, Lundberg O, Malmstrom J, Bodegard M, Stolt L, Rau U, Schock H W and Werner J H 2001 Thin Solid Films 387 11
[17] Dullweber T, Hanna G, Rau U and Schock H W 2001 Sol. Energy Mater. Sol. Cells 67 145
[18] Gloeckler M and Sites J R 2005 J. Phys. Chem. Solids 66 1891
[19] Qi Y F, Kou DX, Zhou W H, Zhou Z J, Tian Q W, Meng Y N, Liu X S, Du Z L and Wu S X 2017 Energy Environ. Sci. 10 2401
[20] Yang K J, Son D H, Sung S J, Sim J H, Kim Y I, Park S N, Jeon D H, Kim J, Hwang D K, Jeon C W, Nam D, Cheong H, Kang J K and Kim D H 2016 J. Mater. Chem. A 4 10151
[21] Meng Q B 2017 Personal discussion on "The first copper-based thin film solar cell seminar"
[22] Antunez P D, Bishop D M, Luo Y and Haight R 2017 Nat. Energy 2 884
[23] Colina M, Bailo E, Medina-Rodríguez B, Kondrotas R, Sánchez-González Y, Sylla D, Placidi M, Blanes M, Ramos F, Cirera A, Pérez Rodríguez A and Saucedo E 2018 J. Alloys Compd. 735 2462
[24] Collord A D and Hillhouse H W 2016 Chem. Mater. 28 2067
[25] Zhang P P, Yu Q, Min X, Guo L B, Shi JJ, Zhao X Y, Li D M, Luo Y H, Wu H J, Meng Q B, Wu S X 2018 RSC Adv. 8 4119
[26] Cahen D and Noufi R 1989 Appl. Phys. Lett. 54 558
[27] Cadel E, Barreau N, Kessler J and Pareige P 2010 Acta Mater. 58 2634
[28] Shin D, Kim J, Gershon T, Mankad R, Hopstaken M, Guha S, Ahn B T and Shin B 2016 Sol. Energy Mater. Sol. Cells 157 695
[29] Hironiwa D, Sakai N, Kato T, Sugimoto H, Tang Z, Chantana J and Minemoto T 2015 Thin Solid Films 582 151
[30] Yang Y, Huang L and Pan D 2017 ACS Appl. Mater. Interfaces 9 23878
[31] Hegedus S S and Shafarman W N 2004 Prog. Photovoltaics:Res. Appl. 12 155
[32] Huang T J, Yin X S, Qi G J and Gong H 2014 Phys. Status Solidi-Rapid Res. Lett. 8 735
[33] Bourdais S, Chone C, Delatouche B, Jacob A, Larramona G, Moisan C, Lafond A, Donatini F, Rey G, Siebentritt S, Walsh A and Dennler G 2016 Adv. Energy Mater. 6 1502276
[34] Li J, Wang H, Luo M, Tang J, Chen C, Liu W, Liu F, Sun Y, Han J and Zhang Y 2016 Sol. Energy Mater. Sol. Cells 149 242
[35] Guo J, Zhou W H, Pei Y L, Tian Q W, Kou D X, Zhou Z J, Meng Y N and Wu S X 2016 Sol. Energy Mater. Sol. Cells 155 209
[36] Nam D, Kim J, Lee J U, Nagaoka A, Yoshino K, Cha W, Kim H, Hwang I C, Yoon K B and Cheong H 2014 Appl. Phys. Lett. 105 173903
[37] Rey G, Redinger A, Sendler J, Weiss T P, Thevenin M, Guennou M, El Adib B and Siebentritt S 2014 Appl. Phys. Lett. 105 112106
[38] Scragg J J S, Choubrac L, Lafond A, Ericson T and Platzer-Björkman C 2014 Appl. Phys. Lett. 104 041911
[39] Chirila A, Reinhard P, Pianezzi F, Bloesch P, Uhl A R, Fella C, Kranz L, Keller D, Gretener C, Hagendorfer H, Jaeger D, Erni R, Nishiwaki S, Buecheler S and Tiwari A N 2013 Nat. Mater. 12 1107
[40] Gao S, Zhang Y, Ao J, Li X, Qiao S, Wang Y, Lin S, Zhang Z, Wang D, Zhou Z, Sun G, Wang S and Sun Y 2018 Sol. Energy Mater. Sol. Cells 182 228
[41] Tajima S, Umehara M, Hasegawa M, Mise T and Itoh T 2017 Prog. Photovoltaics:Res. Appl. 25 14
[42] Li J J, Wang D X, Li X L, Zeng Y and Zhang Y 2018 Adv. Sci. 5 1700744
[43] Duan H S, Yang W, Bob B, Hsu C J, Lei B and Yang Y 2013 Adv. Funct. Mater. 23 1466
[44] Heath J T, Cohen J D and Shafarman W N 2004 J. Appl. Phys. 95 1000
[45] Yan C, Sun K, Huang J, Johnston S, Liu F, Veettil B P, Sun K, Pu A, Zhou F, Stride J A, Green M A and Hao X 2017 ACS Energy Lett. 2 930
[46] Shi J J, Zhnag H Y, Xu X, Li D M, Luo Y H and Meng Q B 2016 Rev. Sci. Instrum. 87 123107
[47] Zhu H, Kalkan A K, Hou J and Fonash S J 1999 AIP Conf. Proc. 462 309
[48] Yan Y, Jiang C S, Noufi R, Wei S H, Moutinho H R and Al-Jassim M M 2007 Phys. Rev. Lett. 99 235504
[49] Li J W, Mitzi D B and Shenoy V B 2011 ACS Nano 5 8613
[50] Yin W J, Wu Y, Wei S H, Noufi R, Al-Jassim M M and Yan Y 2014 Adv. Energy Mater. 4 1300712
[51] Sun L, He J, Kong H, Yue F, Yang P and Chu J 2011 Sol. Energy Mater. Sol. Cells 95 2907
[52] Ito H, Oka M, Ogino T, Takeda A and Mizushima Y 1984 Jpn. J. Appl. Phys. Part 1-Regul. Paper Short Notes Rev. Paper 23 719
[1] Evolution of microstructure, stress and dislocation of AlN thick film on nanopatterned sapphire substrates by hydride vapor phase epitaxy
Chuang Wang(王闯), Xiao-Dong Gao(高晓冬), Di-Di Li(李迪迪), Jing-Jing Chen(陈晶晶), Jia-Fan Chen(陈家凡), Xiao-Ming Dong(董晓鸣), Xiaodan Wang(王晓丹), Jun Huang(黄俊), Xiong-Hui Zeng(曾雄辉), and Ke Xu(徐科). Chin. Phys. B, 2023, 32(2): 026802.
[2] Surface structure modification of ReSe2 nanosheets via carbon ion irradiation
Mei Qiao(乔梅), Tie-Jun Wang(王铁军), Yong Liu(刘泳), Tao Liu(刘涛), Shan Liu(刘珊), and Shi-Cai Xu(许士才). Chin. Phys. B, 2023, 32(2): 026101.
[3] Effect of oxygen on regulation of properties of moderately boron-doped diamond films
Dong-Yang Liu(刘东阳), Li-Cai Hao(郝礼才), Wei-Kang Zhao(赵伟康), Zi-Ang Chen(陈子昂), Kun Tang(汤琨), Shun-Ming Zhu(朱顺明), Jian-Dong Ye(叶建东), Rong Zhang(张荣), You-Dou Zheng(郑有炓), and Shu-Lin Gu(顾书林). Chin. Phys. B, 2022, 31(12): 128104.
[4] Comparison of formation and evolution of radiation-induced defects in pure Ni and Ni-Co-Fe medium-entropy alloy
Lin Lang(稂林), Huiqiu Deng(邓辉球), Jiayou Tao(陶家友), Tengfei Yang(杨腾飞), Yeping Lin(林也平), and Wangyu Hu(胡望宇). Chin. Phys. B, 2022, 31(12): 126102.
[5] Heterogeneous integration of GaSb layer on (100) Si substrate by ion-slicing technique
Ren-Jie Liu(刘仁杰), Jia-Jie Lin(林家杰), Zheng-Hao Shen(沈正皓), Jia-Liang Sun(孙嘉良), Tian-Gui You(游天桂), Jin Li(李进), Min Liao(廖敏), and Yi-Chun Zhou(周益春). Chin. Phys. B, 2022, 31(7): 076103.
[6] Porous AlN films grown on C-face SiC by hydride vapor phase epitaxy
Jiafan Chen(陈家凡), Jun Huang(黄俊), Didi Li(李迪迪), and Ke Xu(徐科). Chin. Phys. B, 2022, 31(7): 076802.
[7] Theoretical study on the improvement of the doping efficiency of Al in 4H-SiC by co-doping group-IVB elements
Yuanchao Huang(黄渊超), Rong Wang(王蓉), Yixiao Qian(钱怡潇), Yiqiang Zhang(张懿强), Deren Yang(杨德仁), and Xiaodong Pi(皮孝东). Chin. Phys. B, 2022, 31(4): 046104.
[8] Strain-tuned magnetic properties in (Ga,Fe)Sb: First-principles study
Feng-Chun Pan(潘凤春), Xue-Ling Lin(林雪玲), and Xu-Ming Wang(王旭明). Chin. Phys. B, 2021, 30(9): 096105.
[9] Microstructure evolution of T91 steel after heavy ion irradiation at 550 ℃
Ligang Song(宋力刚), Bo Huang(黄波), Jianghua Li(李江华), Xianfeng Ma(马显锋), Yang Li(李阳), Zehua Fang(方泽华), Min Liu(刘敏), Jishen Jiang(蒋季伸), and Yanying Hu(胡琰莹). Chin. Phys. B, 2021, 30(8): 086103.
[10] Mechanism of defect evolution in H+ and He+ implanted InP
Ren-Jie Liu(刘仁杰), Jia-Jie Lin(林家杰), N Daghbouj, Jia-Liang Sun(孙嘉良), Tian-Gui You(游天桂), Peng Gao(高鹏), Nie-Feng Sun(孙聂枫), and Min Liao(廖敏). Chin. Phys. B, 2021, 30(8): 086104.
[11] Ion track-based nanowire arrays with gradient and programmable diameters towards rational light management
Ran Huang(黄冉), Jiaming Zhang(张家明), Fangfang Xu(徐芳芳), Jie Liu(刘杰), Huijun Yao(姚会军), Yonghui Chen(陈永辉), and Jinglai Duan(段敬来). Chin. Phys. B, 2021, 30(8): 086105.
[12] Helium-hydrogen synergistic effects on swelling in in-situ multiple-ion beams irradiated steels
Haocheng Liu(刘昊成), Jia Huang(黄嘉), Liuxuan Cao(曹留煊), Yue Su(苏悦), Zhiying Gao(高智颖), Pengfei Ma(马鹏飞), Songqin Xia(夏松钦), Wei Ge(葛伟), Qingyuan Liu(刘清元), Shuang Zhao(赵双), Yugang Wang(王宇钢), Jinchi Huang(黄金池), Zhehui Zhou(周哲辉), Pengfei Zheng(郑鹏飞), and Chenxu Wang(王晨旭). Chin. Phys. B, 2021, 30(8): 086106.
[13] Influence of helium on the evolution of irradiation-induced defects in tungsten: An object kinetic Monte Carlo simulation
Peng-Wei Hou(侯鹏伟), Yu-Hao Li(李宇浩), Zhong-Zhu Li(李中柱), Li-Fang Wang(王丽芳), Xingyu Gao(高兴誉), Hong-Bo Zhou(周洪波), Haifeng Song(宋海峰), and Guang-Hong Lu(吕广宏). Chin. Phys. B, 2021, 30(8): 086108.
[14] Modification of short-range repulsive interactions in ReaxFF reactive force field for Fe-Ni-Al alloy
Huaqiang Chen(陈华强), Lin Lang(稂林), Shuaiyu Yi(易帅玉), Jinlong Du(杜进隆), Guangdong Liu(刘广东), Lixia Liu(刘丽霞), Yufei Wang(王宇飞), Yuehui Wang(王悦辉), Huiqiu Deng(邓辉球), and Engang Fu(付恩刚). Chin. Phys. B, 2021, 30(8): 086110.
[15] Influence of temperature and alloying elements on the threshold displacement energies in concentrated Ni-Fe-Cr alloys
Shijun Zhao(赵仕俊). Chin. Phys. B, 2021, 30(5): 056111.
No Suggested Reading articles found!