Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(5): 054204    DOI: 10.1088/1674-1056/27/5/054204
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Wideband linear-to-circular polarization conversion realized by a transmissive anisotropic metasurface

Bao-Qin Lin(林宝勤), Jian-Xin Guo(郭建新), Bai-Gang Huang(黄百钢), Lin-Bo Fang(方林波), Peng Chu(储鹏), Xiang-Wen Liu(刘湘雯)
School of Information Engineering, Xijing University, Xi'an 710051, China
Abstract  We propose a metasurface which consists of three conductive layers separated by two dielectric layers. Each conductive layer consists of a square array of square loop apertures, however, a pair of corners of each square metal patch surrounded by the square loop apertures have been truncated, so it becomes an orthotropic structure with a pair of mutually perpendicular symmetric axes u and v. The simulated results show that the metasurface can be used as a wideband transmission-type polarization converter to realize linear-to-circular polarization conversion in the frequency range from 12.21 GHz to 18.39 GHz, which is corresponding to a 40.4% fractional bandwidth. Moreover, its transmission coefficients at x-and y-polarized incidences are completely equal. We have analyzed the cause of the polarization conversion, and derived several formulas which can be used to calculate the magnitudes of cross-and co-polarization transmission coefficients at y-polarized incidence, together with the phase difference between them, based on the two independent transmission coefficients at u-and v-polarized incidences. Finally, one experiment was carried out, and the experiment and simulated results are in good agreement with each other.
Keywords:  polarization converter      metasurface      circular polarization  
Received:  26 November 2017      Revised:  22 January 2018      Accepted manuscript online: 
PACS:  42.25.Ja (Polarization)  
  42.79.Fm (Reflectors, beam splitters, and deflectors)  
  78.20.Ci (Optical constants (including refractive index, complex dielectric constant, absorption, reflection and transmission coefficients, emissivity))  
Fund: Project supported by the National Natural Science Foundation of China (Grant No.61471387) and the Research Center for Internet of Things and Big Data Technology of Xijing University,China.
Corresponding Authors:  Bao-Qin Lin     E-mail:  afdaxy@sina.cn

Cite this article: 

Bao-Qin Lin(林宝勤), Jian-Xin Guo(郭建新), Bai-Gang Huang(黄百钢), Lin-Bo Fang(方林波), Peng Chu(储鹏), Xiang-Wen Liu(刘湘雯) Wideband linear-to-circular polarization conversion realized by a transmissive anisotropic metasurface 2018 Chin. Phys. B 27 054204

[13] Gao X, Jiang Y N, Yu X H, et al. 2016 Chin. Phys. B 25 128102
[1] Kajiwara A 1995 IEEE Trans. Veh. Technol. 44 487
[14] Sun H, Gu C and Chen X 2017 J. Appl. Phys. 121 174902
[2] Young L, Robinson L A and Hacking C A 1973 IEEE Trans. Antenn. Propag. 21 376
[15] Xu P, Wang S Y and Wen G 2017 J. Appl. Phys. 121 144502
[3] Huang Y H, Zhou Y and Wu S T 2007 Opt. Express 15 6414
[16] Xu K K, Xiao Z Y and Tang J Y 2016 Physica E 81 169
[4] Chen H, Wang J and Ma H 2014 J. Appl. Phys. 115 154504
[17] Zhou G, Tao X, Shen Z, et al. 2016 Scientific Reports 6 38925
[5] Gao X, Han X and Cao W P 2015 IEEE Trans. Antenn. Propag. 63 3522
[18] Huang C, Feng Y, Zhao J, et al. 2012 Phys. Rev. B 85 195131
[6] Chen H, Wang J, Ma H, et al. 2015 Chin. Phys. B 24 014201
[19] Huang X, Yang D, Yu S, et al. 2014 Appl. Phys. B 117 633
[7] Li W H, Zhang J Q, Qu S B, et al. 2015 Acta Phys. Sin. 64 024101(in Chinese)
[20] Ozer Z, Dincer F and Karaaslan M 2014 Optical Engineering 53 075109
[8] Sui S, Ma H, Wang J, et al. 2016 Appl. Phys. Lett. 109 063908
[21] Furkan D, Muharrem K, Oguzhan A, et al. 2014 Mod. Phys. Lett. B 28 1450250
[9] Dong X, Shi Y and Xia S 2016 Chin. Phys. B 25 084202
[22] Xu Y, Shi Q, Zhu Z, et al. 2014 Opt. Express 22 25679
[10] Wu J, Lin B and Da X 2016 Chin. Phys. B 25 088101
[23] Song K, Liu Y, Luo C, et al. 2014 . Phys. D:Appl. Phys. 47 505104
[11] Khan M I, Fraz Q and Tahir F A 2017 J. Appl. Phys. 121 045103
[24] Liu D, Xiao Z, Ma X, et al. 2015 Appl. Phys. A 118 787
[12] Su P, Zhao Y and Jia S 2016 Scientific Reports 6 20387
[25] Wang J, Shen Z and Wu W 2016 Appl. Phys. Lett. 109 153504
[13] Gao X, Jiang Y N, Yu X H, et al. 2016 Chin. Phys. B 25 128102
[26] Chen H, Ma H, Wang J, Qu S, et al. 2016 Appl. Phys. A 122 463
[14] Sun H, Gu C and Chen X 2017 J. Appl. Phys. 121 174902
[27] Fang S, Luan K, Ma H F, et al. 2017 J. Appl. Phys.s 121 033103
[15] Xu P, Wang S Y and Wen G 2017 J. Appl. Phys. 121 144502
[28] Dou T, Wei L, Ran X, et al. 2017 Iet Microwaves Antennas & Propagation 11 171
[16] Xu K K, Xiao Z Y and Tang J Y 2016 Physica E 81 169
[29] Xu W, Shi Y, Ye J, et al. 2017 Advanced Optical Materials 5 1700108
[17] Zhou G, Tao X, Shen Z, et al. 2016 Scientific Reports 6 38925
[30] Kuwata-Gonokami M, Saito N, Ino Y, et al. 2005 Phys. Rev. Lett. 95 227401
[18] Huang C, Feng Y, Zhao J, et al. 2012 Phys. Rev. B 85 195131
[31] Prosvirnin S L and Zheludev N I 2005 Phys. Rev. E 71 037603
[19] Huang X, Yang D, Yu S, et al. 2014 Appl. Phys. B 117 633
[32] Euler M, Fusco V, Cahill R and Dickie R 2010 Microw. Antennas Propag. 4 1764
[20] Ozer Z, Dincer F and Karaaslan M 2014 Optical Engineering 53 075109
[33] Zhao Y and Alù A 2011 Phys. Rev. B 84 205428
[21] Furkan D, Muharrem K, Oguzhan A, et al. 2014 Mod. Phys. Lett. B 28 1450250
[34] Yan S and Vandenbosch G A E 2013 Appl. Phys. Lett. 102 103503
[22] Xu Y, Shi Q, Zhu Z, et al. 2014 Opt. Express 22 25679
[35] Wu L, Yang Z, Cheng Y, Zhao M, Gong R, et al. 2013 Appl. Phys. Lett. 103 2494
[23] Song K, Liu Y, Luo C, et al. 2014 . Phys. D:Appl. Phys. 47 505104
[36] Martinez-Lopez L and Rodriguez-Cuevas J 2014 IEEE Antennas Wireless Propag. Lett. 13 153
[24] Liu D, Xiao Z, Ma X, et al. 2015 Appl. Phys. A 118 787
[37] Pfeiffer C, Zhang C, Ray V, et al. 2014 Phys. Rev. Lett. 113 023902
[25] Wang J, Shen Z and Wu W 2016 Appl. Phys. Lett. 109 153504
[38] Cheng Y, Nie Y, Cheng Z, et al. 2014 Appl. Phys. B 116 129
[26] Chen H, Ma H, Wang J, Qu S, et al. 2016 Appl. Phys. A 122 463
[39] Wu L, Yang Z, Cheng Y, et al. 2014 Appl. Phys. A 116 643
[27] Fang S, Luan K, Ma H F, et al. 2017 J. Appl. Phys.s 121 033103
[40] Liu Y, Luo Y, Liu C, et al. 2017 Appl. Phys. A 123 571
[28] Dou T, Wei L, Ran X, et al. 2017 Iet Microwaves Antennas & Propagation 11 171
[41] Baena J D 2017 IEEE Trans. Antennas Propag. 65 4124
[29] Xu W, Shi Y, Ye J, et al. 2017 Advanced Optical Materials 5 1700108
[42] Baena J D, Glybovski S B, Risco J P D, et al. 2017 IEEE Trans. Antennas Propag. 65 4124)
[30] Kuwata-Gonokami M, Saito N, Ino Y, et al. 2005 Phys. Rev. Lett. 95 227401
[43] Gansel J K, Thiel M, Rill M S, et al. 2009 Science 325 1513
[31] Prosvirnin S L and Zheludev N I 2005 Phys. Rev. E 71 037603
[44] Gansel J K and Latzel M 2012 Appl. Phys. Lett. 100 101109
[32] Euler M, Fusco V, Cahill R and Dickie R 2010 Microw. Antennas Propag. 4 1764
[45] Kaschke J and Blume L 2015 Advanced Optical Materials 3 1411
[33] Zhao Y and Alù A 2011 Phys. Rev. B 84 205428
[46] Chen M, Jiang L, Sha W, et al. 2016 IEEE Trans. Antennas Propag. 64 4687
[34] Yan S and Vandenbosch G A E 2013 Appl. Phys. Lett. 102 103503
[47] Ji R, Wang S, Liu X, Chen X and Lu W 2016 Nanoscale 8 14725
[35] Wu L, Yang Z, Cheng Y, Zhao M, Gong R, et al. 2013 Appl. Phys. Lett. 103 2494
[48] Guo J, Wang M and Huang W 2017 Chin. Phys. B 26 124211
[36] Martinez-Lopez L and Rodriguez-Cuevas J 2014 IEEE Antennas Wireless Propag. Lett. 13 153
[37] Pfeiffer C, Zhang C, Ray V, et al. 2014 Phys. Rev. Lett. 113 023902
[38] Cheng Y, Nie Y, Cheng Z, et al. 2014 Appl. Phys. B 116 129
[39] Wu L, Yang Z, Cheng Y, et al. 2014 Appl. Phys. A 116 643
[40] Liu Y, Luo Y, Liu C, et al. 2017 Appl. Phys. A 123 571
[41] Baena J D 2017 IEEE Trans. Antennas Propag. 65 4124
[42] Baena J D, Glybovski S B, Risco J P D, et al. 2017 IEEE Trans. Antennas Propag. 65 4124)
[43] Gansel J K, Thiel M, Rill M S, et al. 2009 Science 325 1513
[44] Gansel J K and Latzel M 2012 Appl. Phys. Lett. 100 101109
[45] Kaschke J and Blume L 2015 Advanced Optical Materials 3 1411
[46] Chen M, Jiang L, Sha W, et al. 2016 IEEE Trans. Antennas Propag. 64 4687
[47] Ji R, Wang S, Liu X, Chen X and Lu W 2016 Nanoscale 8 14725
[48] Guo J, Wang M and Huang W 2017 Chin. Phys. B 26 124211
[1] Reconfigurable source illusion device for airborne sound using an enclosed adjustable piezoelectric metasurface
Yi-Fan Tang(唐一璠) and Shu-Yu Lin(林书玉). Chin. Phys. B, 2023, 32(3): 034306.
[2] Generation of elliptical airy vortex beams based on all-dielectric metasurface
Xiao-Ju Xue(薛晓菊), Bi-Jun Xu(徐弼军), Bai-Rui Wu(吴白瑞), Xiao-Gang Wang(汪小刚), Xin-Ning Yu(俞昕宁), Lu Lin(林露), and Hong-Qiang Li(李宏强). Chin. Phys. B, 2023, 32(2): 024215.
[3] High efficiency of broadband transmissive metasurface terahertz polarization converter
Qiangguo Zhou(周强国), Yang Li(李洋), Yongzhen Li(李永振), Niangjuan Yao(姚娘娟), and Zhiming Huang(黄志明). Chin. Phys. B, 2023, 32(2): 024201.
[4] Graphene metasurface-based switchable terahertz half-/quarter-wave plate with a broad bandwidth
Xiaoqing Luo(罗小青), Juan Luo(罗娟), Fangrong Hu(胡放荣), and Guangyuan Li(李光元). Chin. Phys. B, 2023, 32(2): 027801.
[5] High gain and circularly polarized substrate integrated waveguide cavity antenna array based on metasurface
Hao Bai(白昊), Guang-Ming Wang(王光明), and Xiao-Jun Zou(邹晓鋆). Chin. Phys. B, 2023, 32(1): 014101.
[6] Transmissive 2-bit anisotropic coding metasurface
Pengtao Lai(来鹏涛), Zenglin Li(李增霖), Wei Wang(王炜), Jia Qu(曲嘉), Liangwei Wu(吴良威),Tingting Lv(吕婷婷), Bo Lv(吕博), Zheng Zhu(朱正), Yuxiang Li(李玉祥),Chunying Guan(关春颖), Huifeng Ma(马慧锋), and Jinhui Shi(史金辉). Chin. Phys. B, 2022, 31(9): 098102.
[7] Controlling acoustic orbital angular momentum with artificial structures: From physics to application
Wei Wang(王未), Jingjing Liu(刘京京), Bin Liang (梁彬), and Jianchun Cheng(程建春). Chin. Phys. B, 2022, 31(9): 094302.
[8] Dual-function terahertz metasurface based on vanadium dioxide and graphene
Jiu-Sheng Li(李九生) and Zhe-Wen Li(黎哲文). Chin. Phys. B, 2022, 31(9): 094201.
[9] Real-time programmable coding metasurface antenna for multibeam switching and scanning
Jia-Yu Yu(余佳宇), Qiu-Rong Zheng(郑秋容), Bin Zhang(张斌), Jie He(贺杰), Xiang-Ming Hu(胡湘明), and Jie Liu(刘杰). Chin. Phys. B, 2022, 31(9): 090704.
[10] Multiple bottle beams based on metasurface optical field modulation and their capture of multiple atoms
Xichun Zhang(张希纯), Wensheng Fu(付文升), Jinguang Lv(吕金光), Chong Zhang(张崇),Xin Zhao(赵鑫), Weiyan Li(李卫岩), and He Zhang(张贺). Chin. Phys. B, 2022, 31(8): 088103.
[11] Design of an all-dielectric long-wave infrared wide-angle metalens
Ning Zhang(张宁), Qingzhi Li(李青芝), Jun Chen(陈骏), Feng Tang(唐烽),Jingjun Wu(伍景军), Xin Ye(叶鑫), and Liming Yang(杨李茗). Chin. Phys. B, 2022, 31(7): 074212.
[12] Multi-function terahertz wave manipulation utilizing Fourier convolution operation metasurface
Min Zhong(仲敏) and Jiu-Sheng Li(李九生). Chin. Phys. B, 2022, 31(5): 054207.
[13] Design of cylindrical conformal transmitted metasurface for orbital angular momentum vortex wave generation
Ben Fu(付犇), Shi-Xing Yu(余世星), Na Kou(寇娜), Zhao Ding(丁召), and Zheng-Ping Zhang(张正平). Chin. Phys. B, 2022, 31(4): 040703.
[14] An ultra-wideband 2-bit coding metasurface using Pancharatnam—Berry phase for radar cross-section reduction
Bao-Qin Lin(林宝勤), Wen-Zhun Huang(黄文准), Lin-Tao Lv(吕林涛), Jian-Xin Guo(郭建新),Yan-Wen Wang(王衍文), and Hong-Jun Ye(叶红军). Chin. Phys. B, 2022, 31(3): 034204.
[15] Transmission-type reconfigurable metasurface for linear-to-circular and linear-to-linear polarization conversions
Ping Wang(王平), Yu Wang(王豫), Zhongming Yan(严仲明), and Hongcheng Zhou(周洪澄). Chin. Phys. B, 2022, 31(12): 124201.
No Suggested Reading articles found!