Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(11): 118102    DOI: 10.1088/1674-1056/27/11/118102
Special Issue: TOPICAL REVIEW — Physics research in materials genome
TOPICAL REVIEW—Physics research in materials genome Prev   Next  

Combinatorial synthesis and high-throughput characterization of copper-oxide superconductors

J Wu1, A T Bollinger1, X He2, I Bo?ovi?1,2
1 Brookhaven National Laboratory, Upton, New York 11973-5000, USA;
2 Applied Physics Department, Yale University, New Haven, CT 06520, USA
Abstract  

Fast synthesis and screening of materials are vital to the advance of materials science and are an essential component of the Materials Genome Initiative. Here we use copper-oxide superconductors as an example to demonstrate the power of integrating combinatorial molecular beam epitaxy synthesis with high-throughput electric transport measurements. Leveraging this method, we have generated a phase diagram with more than 800 compositions in order to unravel the doping dependence of interface superconductivity. In another application of the same method, we have studied the superconductor-to-insulator quantum phase transition with unprecedented accuracy in tuning the chemical doping level.

Keywords:  Materials Genome Initiative      combinatorial growth      high-throughput characterization      copper-oxide superconductors  
Received:  26 May 2018      Revised:  01 August 2018      Accepted manuscript online: 
PACS:  81.15.-z (Methods of deposition of films and coatings; film growth and epitaxy)  
Corresponding Authors:  J Wu     E-mail:  jwu@bnl.gov

Cite this article: 

J Wu, A T Bollinger, X He, I Božović Combinatorial synthesis and high-throughput characterization of copper-oxide superconductors 2018 Chin. Phys. B 27 118102

[1] de Pablo J J, Jones B, Kovacs C L, Ozolins V and Ramirez A P 2014 Curr. Opin. Solid State Mater. Sci. 18 99
[2] Ceder G 1998 Science 280 1099
[3] Hafner J 2000 Acta Mater. 48 71
[4] Bozovic I 2001 IEEE Trans. Appl. Supercond. 11 2686
[5] Logvenov G, Sveklo I and Bozovic I 2007 Physica C 460-462 416
[6] Clayhold J A, Kerns B M, Schroer M D, Rench D W, Logvenov G, Bolliner A T and Bozovic I 2008 Rev. Sci. Instrum. 79 033908
[7] Clayhold J A, Pelleg O, Bollinger A T, Logvenov G, Kerns B M, Shroer M D, Rench D W and Bozovic I 2009 J. Supercond. Novel Magn. 22 797
[8] Wu J, Pelleg O, Logvenov G, Bollinger A T, Sun Y J, Boebinger G S, Vanevic M, Radovic Z and Bozovic I 2013 Nat. Mater. 12 877
[9] Wu J and Bozovic I 2015 APL Mater. 3 062401
[10] Bollinger A T, Wu J and Bozovic I 2016 APL Mater. 4 53205
[11] Wu J, Bollinger A T, Sun Y J and Bozovic I 2016 Proc. Natl. Acad. Sci. USA 113 4284
[12] Gozar A, Logvenov G, Kourkoutis L F, Bollinger A T, Giannuzzi L A, Muller D A and Bozovic I 2008 Nature 455 782
[13] Logvenov G, Gozar A and Bozovic I 2009 Science 326 699
[14] Radovic Z, Vanevic M, Wu J, Bollinger A T and Bozovic I 2017 J. Supercond Nov. Magn. 30 725
[15] Goldman A M and Markovic N 1998 Phys. Today 51 39
[16] Bollinger A T, Dubuis G, Yoon J, Pavuna D, Misewich J and Bozovic I 2011 Nature 472 458
[17] Bozovic I, He X, Wu J and Bollinger A T 2016 Nature 536 309
[18] Wu J, Bollinger A T, He X and Bozovic I 2017 Nature 547 432
[1] Discovery and design of lithium battery materials via high-throughput modeling
Xuelong Wang(王雪龙), Ruijuan Xiao(肖睿娟), Hong Li(李泓), Liquan Chen(陈立泉). Chin. Phys. B, 2018, 27(12): 128801.
[2] High-throughput research on superconductivity
Mingyang Qin(秦明阳), Zefeng Lin(林泽丰), Zhongxu Wei(魏忠旭), Beiyi Zhu(朱北沂), Jie Yuan(袁洁), Ichiro Takeuchi, Kui Jin(金魁). Chin. Phys. B, 2018, 27(12): 127402.
[3] The materials data ecosystem: Materials data science and its role in data-driven materials discovery
Hai-Qing Yin(尹海清), Xue Jiang(姜雪), Guo-Quan Liu(刘国权), Sharon Elder, Bin Xu(徐斌), Qing-Jun Zheng(郑清军), Xuan-Hui Qu(曲选辉). Chin. Phys. B, 2018, 27(11): 118101.
No Suggested Reading articles found!