Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(12): 127202    DOI: 10.1088/1674-1056/27/12/127202
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Temporal pulsed x-ray response of CdZnTe:In detector

Rong-Rong Guo(郭榕榕)1,2, Ya-Dong Xu(徐亚东)2, Gang-Qiang Zha(查钢强)2, Tao Wang(王涛)2, Wan-Qi Jie(介万奇)2
1 School of Optoelectronic and Communication Engineering, Xiamen University of Technology, Xiamen 361024, China;
2 State Key Laboratory of Solidification Processing, Northwestern Polytechnical University(NWPU), Xi'an 710072, China
Abstract  

The temporal response of cadmium-zinc-telluride (CZT) crystals is evaluated at room temperature by using an ultrafast-pulsed x-ray source. The dynamics of carrier relaxation in a CZT single crystal is modeled at a microscopic level based on a multi-trapping effect. The effects of the irradiation flux and bias voltage on the amplitude and full width at half maximum (FWHM) of the transient currents are investigated. It is demonstrated that the temporal response process is affected by defect level occupation fraction. A fast photon current can be achieved under intense pulsed x-ray irradiation to be up to 2.78×109 photons mm-2·s-1. Meanwhile, it is found that high bias voltage could enhance carrier detrapping by suppressing the capture of structure defects and thus improve the temporal response of CZT detectors.

Keywords:  CdZnTe      ultrafast-pulsed x-rays      transient current      charge carrier  
Received:  17 August 2018      Revised:  26 September 2018      Accepted manuscript online: 
PACS:  72.80.Ey (III-V and II-VI semiconductors)  
  73.50.Gr (Charge carriers: generation, recombination, lifetime, trapping, mean free paths)  
  73.61.Ga (II-VI semiconductors)  
  72.20.Jv (Charge carriers: generation, recombination, lifetime, and trapping)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos. 51702271 and U1631116), the Young and Middle-aged Teachers Education and Scientific Research Foundation of Fujian Province, China (Grant No. JAT170407), the High Level Talent Project of Xiamen University of Technology, China (Grant No.YKJ16016R), and the Fund of the State Key Laboratory of Solidification Processing in NWPU, China (Grant No. SKLSP201741).

Corresponding Authors:  Ya-Dong Xu     E-mail:  xyd220@nwpu.edu.cn

Cite this article: 

Rong-Rong Guo(郭榕榕), Ya-Dong Xu(徐亚东), Gang-Qiang Zha(查钢强), Tao Wang(王涛), Wan-Qi Jie(介万奇) Temporal pulsed x-ray response of CdZnTe:In detector 2018 Chin. Phys. B 27 127202

[1] Tai Y C, Ruangma A, Rowl, D, Siegel S, Newport D F, Chow P L and Laforest R 2005 J. Nucl. Med. 46 455
[2] Van Loef E V D, Dorenbos P, Van Eijk C W E, Krämer K and Güdel H U 2001 Appl. Phys. Lett. 79 1573
[3] Schlesinger T E, Toney J E, Yoon H, Lee E Y, Brunett B A, Franks L and James R B 2001 Mater. Sci. Eng. R Rep. 32 103
[4] Herzog B A, Buechel R R, Katz R, Brueckner M, Husmann L, Burger I A, Pazhenkottil A P, Valenta I, Gaemperli O, Treyer V and Kaufmann P A 2010 J. Nucl. Med. 51 46
[5] Hong J, Allen B, Grindlay J, Barthelemy S, Baker R, Garson A, Krawczynski H, Apple J, Clevel and W H 2011 Nucl. Instrum. Methods Phys. Res. Sect. A 654 361
[6] Okada Y, Takahashi T, Sato G, Watanabe S, Nakazawa K and Mori K 2002 IEEE Trans. Nucl. Sci. 49 1986
[7] Glasser F, Gerbe V, OuvrierBuffet P, Accensi M, Girard J L, Renaud M and GerstenMayer J L 2001 Nucl. Instrum. Methods Phys. Res. Sect. A 458 544
[8] Nakhostin M, Ishii K, Kikuchi Y, Matsuyama S, Yamazaki H and Torshabi A E 2009 Nucl. Instrum. Methods Phys. Res. Sect. A 606 681
[9] Nakhostin M, Walker P M and Sellin P J 2010 Nucl. Instrum. Methods Phys. Res. Sect. A 621 506
[10] LeBlanc J, Possin G E, Yanoff B D and Bogdanovich S 2003 IEEE Trans. Nucl. Sci. 50 1031
[11] Bale D S, Soldner S A and Szeles C 2008 Appl. Phys. Lett. 92 82101
[12] Xu Y, Jie W, Sellin P J, Wang T, Fu L, Zha G and Veeramani P 2009 IEEE Trans. Nucl. Sci. 56 2808
[13] Zhao X C, Ouyang X P, Xu Y D, Han H T, Zhang Z C, Wang T, Zha G Q and Ouyang X 2012 AIP Adv. 2 12162
[14] Guo R, Jie W, Wang N, Zha G, Xu Y, Wang T and Fu X 2015 J. Appl. Phys. 117 94502-1
[15] Tiedje T 1984 Semiconductors and Semimetals, Vol. 21 (Academic Press) pp. 207-238
[16] Shockley W and Read W T 1952 Phys. Rev. 87 835
[17] Elhadidy H, Franc J, Moravec P, Höschl P and Fiederle M 2007 Semicond. Sci. Technol. 22 537
[18] Zhou J and Shimizu T 1993 Solid State Commun. 88 173
[19] Belas E, Hoschl P, Moravec P, Praus P, Franc J, Grill R and Kuba J 2011 Nucl. Instrum. Methods Phys. Res. A 633 100
[20] Siffert P, Berger J, Scharager C, Cornet A, Stuck R, Nucleaires C D R, Serreze H B, Wald F V, Tyco M and Energy S 1976 IEEE Trans. Nucl. Sci. NS-23 159
[21] Ottaviani G, Canali C, Jacoboni C, Quaranta A A and Zanio K 1973 J. Appl. Phys. 44 360
[22] Carini G A, Bolotnikov A E, Camarda G S, Wright G W, James R B and Li L 2006 Appl. Phys. Lett. 88 143515
[23] Iniewski K, Chen H, Bindley G, Kuvvetli I and Jorgensen C B 2007 IEEE Nucl. Sci. Symp. Conf. Rec. 4608
[1] Quantitative measurement of the charge carrier concentration using dielectric force microscopy
Junqi Lai(赖君奇), Bowen Chen(陈博文), Zhiwei Xing(邢志伟), Xuefei Li(李雪飞), Shulong Lu(陆书龙), Qi Chen(陈琪), and Liwei Chen(陈立桅). Chin. Phys. B, 2023, 32(3): 037202.
[2] Exciton emission dynamics in single InAs/GaAs quantum dots due to the existence of plasmon-field-induced metastable states in the wetting layer
Junhui Huang(黄君辉), Hao Chen(陈昊), Zhiyao Zhuo(卓志瑶), Jian Wang(王健), Shulun Li(李叔伦), Kun Ding(丁琨), Haiqiao Ni(倪海桥), Zhichuan Niu(牛智川), Desheng Jiang(江德生), Xiuming Dou(窦秀明), and Baoquan Sun(孙宝权). Chin. Phys. B, 2021, 30(9): 097805.
[3] Influence of sub-bandgap illumination on space charge distribution in CdZnTe detector
Rongrong Guo(郭榕榕, Jinhai Lin(林金海), Lili Liu(刘莉莉), Shiwei Li(李世韦), Chen Wang(王尘), Feibin Xiong(熊飞兵), and Haijun Lin(林海军). Chin. Phys. B, 2021, 30(3): 036101.
[4] Tuning the type of charge carriers in N-heterocyclic carbene-based molecular junctions through electrodes
Ming-Lang Wang(王明郎) and Chuan-Kui Wang(王传奎). Chin. Phys. B, 2020, 29(11): 113101.
[5] Effect of transient space-charge perturbation on carrier transport in high-resistance CdZnTe semiconductor
Yu Guo(郭玉), Gang-Qiang Zha(查钢强), Ying-Rui Li(李颖锐), Ting-Ting Tan(谭婷婷), Hao Zhu(朱昊), Sen Wu(吴森). Chin. Phys. B, 2019, 28(11): 117201.
[6] Distinctive distribution of defects in CdZnTe: In ingots and their effects on the photoelectric properties
Xu Fu(符旭), Fang-Bao Wang(王方宝), Xi-Ran Zuo(左希然), Ze-Jian Wang(王泽剑), Qian-Ru Wang(王倩茹), Ke-Qin Wang(王柯钦), Ling-Yan Xu(徐凌燕), Ya-Dong Xu(徐亚东), Rong-Rong Guo(郭榕榕), Hui Yu(于晖), Wan-Qi Jie(介万奇). Chin. Phys. B, 2018, 27(3): 037302.
[7] Twin boundary dominated electric field distribution in CdZnTe detectors
Jiangpeng Dong(董江鹏), Wanqi Jie(介万奇), Jingyi Yu(余竞一), Rongrong Guo(郭榕榕), Christian Teichert, Kevin-P Gradwohl, Bin-Bin Zhang(张滨滨), Xiangxiang Luo(罗翔祥), Shouzhi Xi(席守智), Yadong Xu(徐亚东). Chin. Phys. B, 2018, 27(11): 117202.
[8] First-principles analysis of the structural, electronic, and elastic properties of cubic organic-inorganic perovskite HC(NH2)2PbI3
Jun-Fei Wang(王俊斐), Xiao-Nan Fu(富笑男), Jun-Tao Wang(王俊涛). Chin. Phys. B, 2017, 26(10): 106301.
[9] First-principles hybrid functional study of the electronic structure and charge carrier mobility in perovskite CH3NH3SnI3
Li-Juan Wu(伍丽娟), Yu-Qing Zhao(赵宇清), Chang-Wen Chen(陈畅文), Ling-Zhi Wang(王琳芝), Biao Liu(刘标), Meng-Qiu Cai(蔡孟秋). Chin. Phys. B, 2016, 25(10): 107202.
[10] Effect of de-trapping on carrier transport process in semi-insulating CdZnTe
Guo Rong-Rong (郭榕榕), Jie Wan-Qi (介万奇), Zha Gang-Qiang (查钢强), Xu Ya-Dong (徐亚东), Feng Tao (冯涛), Wang Tao (王涛), Du Zhuo-Tong (杜卓同). Chin. Phys. B, 2015, 24(6): 067203.
No Suggested Reading articles found!