Special Issue:
SPECIAL TOPIC — 80th Anniversary of Northwestern Polytechnical University (NPU)
|
SPECIAL TOPIC—80th Anniversary of Northwestern Polytechnical University (NPU) |
Prev
Next
|
|
|
Twin boundary dominated electric field distribution in CdZnTe detectors |
Jiangpeng Dong(董江鹏)1,2, Wanqi Jie(介万奇)1,2, Jingyi Yu(余竞一)2, Rongrong Guo(郭榕榕)3, Christian Teichert4, Kevin-P Gradwohl4, Bin-Bin Zhang(张滨滨)2, Xiangxiang Luo(罗翔祥)2, Shouzhi Xi(席守智)2, Yadong Xu(徐亚东)1,2 |
1 State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an 710072, China;
2 Key Laboratory of Radiation Detection Materials and Devices, Northwestern Polytechnical University, Xi'an 710072, China;
3 School of Optoeletronic and Communication Engineering, Xiamen University of Technology, Xiamen 361024, China;
4 Institute of Physics, Montanuniversitaet Leoben, Leoben 8700, Austria |
|
|
Abstract The performance of CdZnTe X/γ-ray detectors is strongly affected by the electric field distribution in terms of charge transport and charge collection. Factors which determine the electric field distribution are not only electric contact, but also intrinsic defects, especially grown-in twin boundaries. Here, the electric field distribution around twin boundaries is investigated in a CdZnTe bicrystal detector with a {111}-{111} twin plane using the Pockels electro-optic effect. The results of laser beam induced current pulses are also obtained by the transient current technique, and we discuss the influence of the twin boundary on the electric field evolution. These studies reveal a significant distortion of the electric field, which is attributed to the buildup of space charges at twin boundaries. Also, the position of these space charge regions depends on the polarity of the detector bias. An energy band model based on the formation of an n-n+-n junction across the twin boundary has been established to explain the observed results.
|
Received: 14 July 2018
Revised: 16 August 2018
Accepted manuscript online:
|
PACS:
|
72.80.Ey
|
(III-V and II-VI semiconductors)
|
|
61.72.Mm
|
(Grain and twin boundaries)
|
|
07.85.Fv
|
(X- and γ-ray sources, mirrors, gratings, and detectors)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. U1631116 and 51702271), the National Key Research and Development Program of China (Grant No. 2016YFE0115200), the Natural Science Basic Research Plan in Shaanxi Province of China (Grant No. 2017KW-029), Austrian Academic Exchange Service (ÖD-WTZ) through project CN 02/2016, the Fundamental Research Funds for the Central Universities of China (Grant Nos. 3102017zy057 and 3102018jcc036), and the Young and Middle-aged Teachers Education and Scientific Research Foundation of Fujian Province, China (Grant No. JAT170407). |
Corresponding Authors:
Yadong Xu
E-mail: xyd220@nwpu.edu.cn
|
Cite this article:
Jiangpeng Dong(董江鹏), Wanqi Jie(介万奇), Jingyi Yu(余竞一), Rongrong Guo(郭榕榕), Christian Teichert, Kevin-P Gradwohl, Bin-Bin Zhang(张滨滨), Xiangxiang Luo(罗翔祥), Shouzhi Xi(席守智), Yadong Xu(徐亚东) Twin boundary dominated electric field distribution in CdZnTe detectors 2018 Chin. Phys. B 27 117202
|
[1] |
Li H, Liu X X, Lin Y S, Yang B and Du Z M 2015 Phys. Chem. Chem. Phys. 17 11150
|
[2] |
Bueno P R, Varela J A and Longo E 2008 J. Eur. Ceram. Soc. 28 505
|
[3] |
Tressler J F, Alkoy S and Newnham R E 1998 J. Electroceram. 2 257
|
[4] |
Pavesi M, Santi A, Bettelli M, Zappettini A and Zanichelli M 2017 IEEE Trans. Nucl. Sci. 64 2706
|
[5] |
Gupta T K and Carlson W G 1985 J. Mater. Sci. 20 3487
|
[6] |
Nevosad A, Hofstaetter M, Wiessner M, Supancic P and Teichert C 2013 Oxide-based Materials and Devices IV, p. 862618
|
[7] |
Nevosad A, Hofstätter M, Supancic P, Danzer R and Teichert C 2014 J. Eur. Ceram. Soc. 34 1963
|
[8] |
Li C, Wu Y, Poplawsky J, Pennycook T J, Paudel N, Yin W, Haigh S J, Oxley M P, Lupini A R, Al-Jassim M, Pennycook S J and Yan Y 2014 Phys. Rev. Lett. 112 156103
|
[9] |
Kowatari M, Kubota T, Shibahara Y, Fujii T, Fukutani S, Takamiya K, Mizuno S and Yamana H 2015 Radiat. Prot. Dosim. 167 348
|
[10] |
Agostini D, Marie P Y, Ben-Haim S, Rouzet F, Songy B, Giordano A, Gimelli A, Hyafil F, Sciagrá R and Bucerius J 2016 Eur. J. Nucl. Medicine Mol. Imaging 43 2423
|
[11] |
Aleotti J, Micconi G, Caselli S, Benassi G, Zambelli N, Calestani D, Zanichelli M, Bettelli M and Zappettini A 2015 Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC), 2015 IEEE, pp. 1-5
|
[12] |
Philippov D, Popova E, Vinogradov S, Stifutkin A, Pleshko A, Klemin S, Ilyin A, Belyaev V, Besson D and Vandychev M 2018 IEEE Trans. Nucl. Sci. 65 2013
|
[13] |
Parker B H, Stahle C M, Roth D J, Babu R S and Tueller J 2001 International Symposium on Optical Science and Technology, p. 11
|
[14] |
Bolotnikov A E, Babalola S, Camarda G S, Cui Y, Gul R, Egarievwe S U, Fochuk P M, Fuerstnau M, Horace J, Hossain A, Jones F, Kim K H, Kopach O V, McCall B, Marchini L, Raghothamachar B, Taggart R, Yang G, Xu L and James R B 2011 IEEE Trans. Nucl. Sci. 58 1972
|
[15] |
Visoly-Fisher I, Cohen S R, Gartsman K, Ruzin A and Cahen D 2006 Adv. Funct. Mater. 16 649
|
[16] |
Jiang C S, Moutinho H R, Dhere R G and Al-Jassim M M 2013 IEEE J. Photovoltaics 3 1383
|
[17] |
Yoon H P, Haney P M, Ruzmetov D, Xu H, Leite M S, Hamadani B H, Talin A A and Zhitenev N B 2013 Sol. Energy Mater. Sol. Cells 117 499
|
[18] |
Guo R, Jie W, Xu Y, Yu H, Zha G, Wang T and Ren J 2015 Nucl. Instrum. Methods Phys. Res. Sect. A:Accel. Spectrometers Detectors Associated Equipment 794 62
|
[19] |
Smith S, Zhang P, Gessert T and Mascarenhas A 2004 Appl. Phys. Lett. 85 3854
|
[20] |
Groza M, Krawczynski H, I I I A G, Martin J W, Lee K, Li Q, Beilicke M, Cui Y, Buliga V, Guo M, Coca C and Burger A 2010 J. Appl. Phys. 107 023704
|
[21] |
Li W, Tkaczyk J E, Andreini K W, Cui J, Zhang T, Williams Y, Harding K G, Chen H, Bindley G and Matyi R J 2009 2009 IEEE Nuclear Science Symposium Conference Record (NSS/MIC), October 242009-November 1, 2009, pp. 1658-1665
|
[22] |
Cola A, Farella I, Auricchio N and Caroli E 2006 J. Opt. A:Pure Appl. Opt. 8 S467
|
[23] |
Yang G, Bolotnikov A E, Camarda G S, Cui Y, Hossain A, Kim K and James R B 2009 SPIE Optical Engineering+Applications, p. 7
|
[24] |
Babalola O, Bolotnikov A, Groza M, Hossain A, Egarievwe S, James R and Burger A 2009 J. Cryst. Growth 311 3702
|
[25] |
Li G, Zhang X, Hua H and Jie W 2005 J. Electron. Mater. 34 1215
|
[26] |
Rong-Rong G, Wan-Qi J, Gang-Qiang Z, Ya-Dong X, Tao F, Tao W and Zhuo-Tong D 2015 Chin. Phys. B 24 067203
|
[27] |
Namba S 1961 J. Opt. Soc. Am. 51 76
|
[28] |
Bylsma R B, Bridenbaugh P M, Olson D H and Glass A M 1987 Appl. Phys. Lett. 51 889
|
[29] |
Bolotnikov A E, Babalola S O, Camarda G S, Chen H, Awadalla S, Cui Y, Egarievwe S U, Fochuk P M, Hawrami R and Hossain A 2009 IEEE Trans. Nucl. Sci. 56 1775
|
[30] |
Henager Jr C, Edwards D J, Schemer-Kohrn A L, Bliss M and Jaffe J E 2009 J. Cryst. Growth 311 2641
|
[31] |
Rudolph P, Engel A, Schentke I and Grochocki A 1995 J. Cryst. Growth 147 297
|
[32] |
Gu Y, Jie W, Li L, Xu Y, Yang Y, Ren J, Zha G, Wang T, Xu L, He Y and Xi S 2016 Micron 88 48
|
[33] |
Fu X, Xu Y, Gu Y, Jia N, Xu L, Zha G, Wang T and Jie W 2017 J. Appl. Phys. 122 225102
|
[34] |
Soundararajan R and Lynn K G 2012 J. Appl. Phys. 112 073111
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|