Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(11): 114101    DOI: 10.1088/1674-1056/27/11/114101
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Ultra-wideband low radar cross-section metasurface and its application on waveguide slot antenna array

Li-Li Cong(丛丽丽), Xiang-Yu Cao(曹祥玉), Tao Song(宋涛), Jun Gao(高军)
Air Force Engineering University, Xi'an 710077, China
Abstract  

A novel approach devoted to achieving ultra-wideband radar cross section reduction (RCSR) of a waveguide slot antenna array (WGSAA) while maintaining its radiation performance is proposed. Three kinds of artificial magnetic conductors (AMCs) tiles consisting of three types of basic units resonant at different frequencies are designed and arranged in a novel quadruple-triangle-type configuration to create a composite planar metasurface. The proposed metasurface is characterized by low radar feature over an ultra-wideband based on the principle of phase cancellation. Both simulated and measured results demonstrate that after the composite metasurface is used to cover part of the antenna array, an ultra-wideband RCSR involving in-band and out-of-band is achieved for co-and cross-polarized incident waves based on energy cancellation, while the radiation performance is well retained. The proposed method is simple, low-cost, and easy-to-fabricate, providing a new method for ultra-wideband RCSR of an antenna array. Moreover, the method proposed in this paper can easily be applied to other antenna architectures.

Keywords:  metasurface      polarization-independent artificial magnetic conductor (PIDAMC)      waveguide slot antenna array (WGSAA)      radar cross section reduction  
Received:  26 June 2018      Revised:  27 July 2018      Accepted manuscript online: 
PACS:  41.20.Jb (Electromagnetic wave propagation; radiowave propagation)  
  73.20.Mf (Collective excitations (including excitons, polarons, plasmons and other charge-density excitations))  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos. 61671464, 61701523, and 61471389).

Corresponding Authors:  Xiang-Yu Cao     E-mail:  1183068955@qq.com

Cite this article: 

Li-Li Cong(丛丽丽), Xiang-Yu Cao(曹祥玉), Tao Song(宋涛), Jun Gao(高军) Ultra-wideband low radar cross-section metasurface and its application on waveguide slot antenna array 2018 Chin. Phys. B 27 114101

[1] Gomory F, Solovyov M, Souc J, Navau C, Prat-Camps J and Sanchez A 2012 Science 335 1466
[2] Davenport C J and Rigelsford J M 2014 IEEE Trans. Antennas Propag. 62 4518
[3] Paquay M, Iriarte J C, Ederra I, Gonzalo R and Maagt P D 2007 IEEE Trans. Antennas Propag. 55 3630
[4] Zhang J, Wang J, Chen M and Zhang Z 2012 IEEE Antennas Wireless. Propag. Lett. 11 1048
[5] Liu Y, Hao Y W, Li K and Gong S X 2016 IEEE Antennas Wireless. Propag. Lett. 15 1028
[6] Liu Y, Li K, Jia Y T, Hao Y W, Gong S X and Guo Y J 2016 IEEE Trans. Antennas Propag. 64 326
[7] Liu X, Gao J, Xu L M, Cao X Y, Zhao Y, and Li S J 2017 IEEE Antennas Wireless Propag. Lett. 16 724
[8] Zhao Y, Cao X Y, Gao J and Li W Q 2014 Microw. Opt. Technol. Lett. 56 158
[9] Huang C, Pan W B and Luo X G 2016 Sci. Rep. 6 23291
[10] Mighani M and Dadashzadeh G 2016 Electron. Lett. 52 1253
[11] Zhao Y, Cao X Y, Gao J, Yao X and Liu X 2016 IEEE Antennas Wireless Propag. Lett. 15 290
[12] Simms S and Fusco V 2008 Electron. Lett. 44 316
[13] Monorchio A, Manara G and Lanuzza L 2002 IEEE Antennas Wireless Propag. Lett. 1 196
[14] De Cos M E, Las-Heras F and Franco M 2009 IEEE Antennas Wireless Propag. Lett. 8 951
[15] ChenWG, Balanis C A and Birtcherm C R 2016 IEEE Trans. Antennas Propag. 64 4133
[16] Saadat S, Adnan M, Mosallaei H and Afshari E 2013 IEEE Trans. Antennas Propag. 61 1210
[17] Zheng Y J, Gao J, Cao X Y, Yuan Z D and Yang H H 2015 IEEE Antennas Wireless Propag. Lett. 14 1582
[18] Chen W G, Balanis C A and Birtcher C R 2015 IEEE Trans. Antennas Propag. 63 2636
[19] Iriarte J C, Pereda A T, Martinez de Falcon J L, Ederra I, Gonzalo R and Peter de Maagt 2013 IEEE Trans. Antennas Propag. 61 6136
[20] Edalati A and Sarabandi K 2014 IEEE Trans. Antennas Propag. 62 747
[21] Green J, Shnitkin H and Bertalan P J 1990 IEEE Trans. Antennas Propag. 38 1161
[22] Cui T J, Qi M Q and Wan X 2014 Light:Science & Applications 3 e218
[1] Reconfigurable source illusion device for airborne sound using an enclosed adjustable piezoelectric metasurface
Yi-Fan Tang(唐一璠) and Shu-Yu Lin(林书玉). Chin. Phys. B, 2023, 32(3): 034306.
[2] Graphene metasurface-based switchable terahertz half-/quarter-wave plate with a broad bandwidth
Xiaoqing Luo(罗小青), Juan Luo(罗娟), Fangrong Hu(胡放荣), and Guangyuan Li(李光元). Chin. Phys. B, 2023, 32(2): 027801.
[3] High efficiency of broadband transmissive metasurface terahertz polarization converter
Qiangguo Zhou(周强国), Yang Li(李洋), Yongzhen Li(李永振), Niangjuan Yao(姚娘娟), and Zhiming Huang(黄志明). Chin. Phys. B, 2023, 32(2): 024201.
[4] Generation of elliptical airy vortex beams based on all-dielectric metasurface
Xiao-Ju Xue(薛晓菊), Bi-Jun Xu(徐弼军), Bai-Rui Wu(吴白瑞), Xiao-Gang Wang(汪小刚), Xin-Ning Yu(俞昕宁), Lu Lin(林露), and Hong-Qiang Li(李宏强). Chin. Phys. B, 2023, 32(2): 024215.
[5] High gain and circularly polarized substrate integrated waveguide cavity antenna array based on metasurface
Hao Bai(白昊), Guang-Ming Wang(王光明), and Xiao-Jun Zou(邹晓鋆). Chin. Phys. B, 2023, 32(1): 014101.
[6] Transmissive 2-bit anisotropic coding metasurface
Pengtao Lai(来鹏涛), Zenglin Li(李增霖), Wei Wang(王炜), Jia Qu(曲嘉), Liangwei Wu(吴良威),Tingting Lv(吕婷婷), Bo Lv(吕博), Zheng Zhu(朱正), Yuxiang Li(李玉祥),Chunying Guan(关春颖), Huifeng Ma(马慧锋), and Jinhui Shi(史金辉). Chin. Phys. B, 2022, 31(9): 098102.
[7] Controlling acoustic orbital angular momentum with artificial structures: From physics to application
Wei Wang(王未), Jingjing Liu(刘京京), Bin Liang (梁彬), and Jianchun Cheng(程建春). Chin. Phys. B, 2022, 31(9): 094302.
[8] Dual-function terahertz metasurface based on vanadium dioxide and graphene
Jiu-Sheng Li(李九生) and Zhe-Wen Li(黎哲文). Chin. Phys. B, 2022, 31(9): 094201.
[9] Real-time programmable coding metasurface antenna for multibeam switching and scanning
Jia-Yu Yu(余佳宇), Qiu-Rong Zheng(郑秋容), Bin Zhang(张斌), Jie He(贺杰), Xiang-Ming Hu(胡湘明), and Jie Liu(刘杰). Chin. Phys. B, 2022, 31(9): 090704.
[10] Multiple bottle beams based on metasurface optical field modulation and their capture of multiple atoms
Xichun Zhang(张希纯), Wensheng Fu(付文升), Jinguang Lv(吕金光), Chong Zhang(张崇),Xin Zhao(赵鑫), Weiyan Li(李卫岩), and He Zhang(张贺). Chin. Phys. B, 2022, 31(8): 088103.
[11] Design of an all-dielectric long-wave infrared wide-angle metalens
Ning Zhang(张宁), Qingzhi Li(李青芝), Jun Chen(陈骏), Feng Tang(唐烽),Jingjun Wu(伍景军), Xin Ye(叶鑫), and Liming Yang(杨李茗). Chin. Phys. B, 2022, 31(7): 074212.
[12] Multi-function terahertz wave manipulation utilizing Fourier convolution operation metasurface
Min Zhong(仲敏) and Jiu-Sheng Li(李九生). Chin. Phys. B, 2022, 31(5): 054207.
[13] Design of cylindrical conformal transmitted metasurface for orbital angular momentum vortex wave generation
Ben Fu(付犇), Shi-Xing Yu(余世星), Na Kou(寇娜), Zhao Ding(丁召), and Zheng-Ping Zhang(张正平). Chin. Phys. B, 2022, 31(4): 040703.
[14] An ultra-wideband 2-bit coding metasurface using Pancharatnam—Berry phase for radar cross-section reduction
Bao-Qin Lin(林宝勤), Wen-Zhun Huang(黄文准), Lin-Tao Lv(吕林涛), Jian-Xin Guo(郭建新),Yan-Wen Wang(王衍文), and Hong-Jun Ye(叶红军). Chin. Phys. B, 2022, 31(3): 034204.
[15] Transmission-type reconfigurable metasurface for linear-to-circular and linear-to-linear polarization conversions
Ping Wang(王平), Yu Wang(王豫), Zhongming Yan(严仲明), and Hongcheng Zhou(周洪澄). Chin. Phys. B, 2022, 31(12): 124201.
No Suggested Reading articles found!