Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(1): 013201    DOI: 10.1088/1674-1056/27/1/013201
ATOMIC AND MOLECULAR PHYSICS Prev   Next  

A new fully quantum-mechanical method used to calculate the collisional broadening coefficients and shift coefficients of Rb D1 lines perturbed by noble gases He and Ar

Wei Zhang(张伟), Yanchao Shi(史彦超), Bitao Hu(胡碧涛), Yi Zhang(张毅)
School of Nuclear Science and Technology, Lanzhou University, Lanzhou 730000, China
Abstract  In this work, a new full quantum method is proposed to calculate the broadening and shift coefficients of the D1 line in neutral collision. Based on the variable phase approach and Baranger theory, this method calculates the scattering phase shift instead of scattering matrix elements in order to simplify the calculation. As an illustration, this method is used to calculate the broadening and shift coefficients of the absorption lines of alkali metal atom Rb, as it collides with buffer gas He and Ar, in a temperature range from 150 K to 800 K. With a comparison with other calculations and experiment measurements, the reasonable agreements in all cases demonstrate the validity and simplicity of this method.
Keywords:  collisional broadening and shift      variable phase method      phase shift  
Received:  01 April 2017      Revised:  11 September 2017      Accepted manuscript online: 
PACS:  32.70.Jz (Line shapes, widths, and shifts)  
  34.50.-s (Scattering of atoms and molecules)  
  03.65.Nk (Scattering theory)  
Fund: Project supported by the National Natural Science Foundation of China (Grants Nos. 11405077 and 11575073).
Corresponding Authors:  Yi Zhang     E-mail:  yizhang@lzu.edu.cn

Cite this article: 

Wei Zhang(张伟), Yanchao Shi(史彦超), Bitao Hu(胡碧涛), Yi Zhang(张毅) A new fully quantum-mechanical method used to calculate the collisional broadening coefficients and shift coefficients of Rb D1 lines perturbed by noble gases He and Ar 2018 Chin. Phys. B 27 013201

[1] Allard N F, Kielkopf J F and Allard F 2007 Eur. Phys. J. D 44 507
[2] Page R H, Beach R J and Kanz V K 2006 Opt. Lett. 31 353
[3] Kluttz K A, Averett T D and Wolin B A 2013 Phys. Rev. A 87 032516
[4] Mullamphy D F T, Peach G, Venturi V, Whittingham I B and Gibson S J 2007 J. Phys. B: At. Mol. Opt. Phys. 40 1141
[5] Zhu C, Babb J F and Dalgarno A 2006 Phys. Rev. A 73 012506
[6] Krupke W F, Beach R J, Kanz V K and Payne S A 2003 Opt. Lett. 28 2336
[7] Allard N and Kielkopf J 1982 Rev. Mod. Phys. 54 1103
[8] Baranger M 1958 Phys. Rev. 111 481
[9] Baranger M 1958 Phys. Rev. 112 855
[10] Blank L A and Weeks D E 2014 Phys. Rev. A 90 022510
[11] Loper R J 2013 Collisional Broadening and Shift of D1 and D2 Spectral Lines in Atomic Alkali Vapor-Noble Gas System (Ph.D. Dissertation) (Air Force Institute of Technology of America)
[12] Weeks D E and Tannor D J 1993 Chem. Phys. Lett. 207 301
[13] Calogero F 1967 Variable Phase Approach to Potential Scattering (New York: Academic Press Inc. and London: Academic Press Inc.)
[14] Du B G, Sun J F, Zhang J C, Zhang Y, Li W and Zhu Z L 2008 Chin. Phys. Lett. 25 3639
[15] Ouerdane H and Jamieson M J 2004 Phys. Rev. A 70 022712
[16] Tang K T and Toennies J P 1984 J. Chem. Phys. 80 3726
[17] Blank L, Weeks D E and Kedziora G S 2012 J. Chem. Phys. 136 124315
[18] Miller W S, Rice C A, Hager G D, Rotondaro M D, Berriche H and Perram G P 2016 J. Quant. Spectrosc. Radiat. Transf. 184 118
[19] Lewis C D 2011 Non-Adiabatic Tansitions Computational Cross Section Calculations of Alkali Metal-Noble Gas Collisions (Ph.D. Dissertation) (Air Force Institute of Technology of America)
[20] Belov V N 1981 Opt. Spectrosc. 51 209
[21] Izotova S L, Kantserov A I and Frish M S 1981 Opt. Spectrosc. 51 107
[22] Pitz G A, Sandoval A J, Tafoya T B, Klennert W L and Hostutler D A 2014 J. Quant. Spectrosc. Radiat. Transf. 140 18
[23] Rotondaro M D and Perram G P 1997 J. Quant. Spectrosc. Radiat. Transf. 57 497
[24] Mott N F and Massey H S W 1965 The Theory of Atomic Collisions (Oxford: Oxford University Press)
[25] Bouchoucha S, Alioua K and Bouledroua M 2017 Chin. Phys. B 26 073202
[26] Kielkopf J F 1976 J. Phys. B 9 1601
[27] Peach G and Whittingham I B 2009 New Astron. Rev. 53 227
[28] Allard N F, Nakayama A, Stienkemeier F, Kielkopf J F, Guillon G and Viel A 2014 Adv. Space Res. 54 1290
[1] Three-step self-calibrating generalized phase-shifting interferometry
Yu Zhang(张宇). Chin. Phys. B, 2022, 31(3): 030601.
[2] Experimental demonstration of a fast calibration method for integrated photonic circuits with cascaded phase shifters
Junqin Cao(曹君勤), Zhixin Chen(陈志歆), Yaxin Wang(王亚新), Tianfeng Feng(冯田峰), Zhihao Li(李志浩), Zeyu Xing(邢泽宇), Huashan Li(李华山), and Xiaoqi Zhou(周晓祺). Chin. Phys. B, 2022, 31(11): 114204.
[3] A low noise, high fidelity cross phase modulation in multi-level atomic medium
Liangwei Wang(王亮伟), Jia Guan(关佳), Chengjie Zhu(朱成杰), Runbing Li(李润兵), and Jing Shi(石兢). Chin. Phys. B, 2021, 30(11): 114204.
[4] Repulsive bubble-bubble interaction in ultrasonic field
Ling-Ling Zhang(张玲玲), Wei-Zhong Chen(陈伟中), Yao-Rong Wu(武耀蓉), Yang Shen(沈阳), and Guo-Ying Zhao(赵帼英). Chin. Phys. B, 2021, 30(10): 104301.
[5] Soliton molecules and dynamics of the smooth positon for the Gerdjikov–Ivanov equation
Xiangyu Yang(杨翔宇), Zhao Zhang(张钊), and Biao Li(李彪)†. Chin. Phys. B, 2020, 29(10): 100501.
[6] Generation of orbital angular momentum and focused beams with tri-layer medium metamaterial
Zhi-Chao Sun(孙志超), Meng-Yao Yan(闫梦瑶), and Bi-Jun Xu(徐弼军)†. Chin. Phys. B, 2020, 29(10): 104101.
[7] Single-shot phase-shifting digital holography with a photon-sieve-filtering telescope
You Li(李优), Yao-Cun Li(李垚村), Jun-Yong Zhang(张军勇), Yan-Li Zhang(张艳丽), Xue-Mei Li(李雪梅). Chin. Phys. B, 2019, 28(8): 084205.
[8] Simultaneous polarization separation and switching for 100-Gbps DP-QPSK signals in backbone networks
Yu-Long Su(苏玉龙), Huan Feng(冯欢), Hui Hu(胡辉), Wei Wang(汪伟), Tao Duan(段弢), Yi-Shan Wang(王屹山), Jin-Hai Si(司金海), Xiao-Ping Xie(谢小平), He-Ning Yang(杨合宁), Xin-Ning Huang(黄新宁). Chin. Phys. B, 2019, 28(2): 024216.
[9] Phase shift effects of radio-frequency bias on ion energy distribution in continuous wave and pulse modulated inductively coupled plasmas
Chan Xue(薛婵), Fei Gao(高飞), Yong-Xin Liu(刘永新), Jia Liu(刘佳), You-Nian Wang(王友年). Chin. Phys. B, 2018, 27(4): 045202.
[10] Performance analysis of quantum access network using code division multiple access model
Linxi Hu(胡林曦), Can Yang(杨灿), Guangqiang He(何广强). Chin. Phys. B, 2017, 26(6): 060304.
[11] Non-relativistic scattering amplitude for a new multi-parameter exponential-type potential
Yazarloo B H, Mehraban H, Hassanabadi H. Chin. Phys. B, 2016, 25(8): 080302.
[12] Self-calibration wavelength modulation spectroscopy for acetylene detection based on tunable diode laser absorption spectroscopy
Qin-Bin Huang(黄秦斌), Xue-Mei Xu(许雪梅), Chen-Jing Li(李晨静), Yi-Peng Ding(丁一鹏), Can Cao(曹粲), Lin-Zi Yin(尹林子), Jia-Feng Ding(丁家峰). Chin. Phys. B, 2016, 25(11): 114202.
[13] Fluctuations of optical phase of diffracted light for Raman-Nath diffraction in acousto-optic effect
Weng Cun-Cheng (翁存程), Zhang Xiao-Man (章小曼). Chin. Phys. B, 2015, 24(1): 014210.
[14] Large phase shift of spatial soliton in lead glass by cross-phase modulation in pump-signal geometry
Shou Qian (寿倩), Liu Dong-Wen (刘东文), Zhang Xiang (张翔), Hu Wei (胡巍), Guo Qi (郭旗). Chin. Phys. B, 2014, 23(8): 084204.
[15] Theory study on a photonic-assisted radio frequency phase shifter with direct current voltage control
Li Jing (李晶), Ning Ti-Gang (宁提纲), Pei Li (裴丽), Jian Wei (简伟), You Hai-Dong (油海东), Wen Xiao-Dong (温晓东), Chen Hong-Yao (陈宏尧), Zhang Chan (张婵), Zheng Jing-Jing (郑晶晶). Chin. Phys. B, 2014, 23(10): 104216.
No Suggested Reading articles found!