Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(5): 054211    DOI: 10.1088/1674-1056/27/5/054211
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

High-power ultraviolet 278-nm laser from fourth-harmonic generation of an Nd: YAG amplifier in CsB3O5 crystal

Miao He(何苗)1,2,3, Feng Yang(杨峰)1,2, Cheng Dong(董程)1,2,3, Zhi-Chao Wang(王志超)1,2, Lei Yuan(袁磊)1,2, Yi-Ting Xu(徐一汀)1, Guo-Chun Zhang(张国春)2, Zhi-Min Wang(王志敏)1,2, Yong Bo(薄勇)1,2, Qin-Jun Peng(彭钦军)1,2, Da-Fu Cui(崔大复)1, Yi-Cheng Wu(吴以成)2, Zu-Yan Xu(许祖彦)1,2
1 Key Laboratory of Solidstate Laser, Technical Institute of Physics and Chemistry(TIPC), Chinese Academy of Sciences, Beijing 100190, China;
2 Key Laboratory of Functional Crystal and Laser Technology, TIPC, Chinese Academy of Sciences, Beijing 100190, China;
3 University of Chinese Academy of Sciences, Beijing 100049, China
Abstract  We report on the experimental investigation and theoretical analysis of a nanosecond pulse high power ultraviolet (UV) 278 nm laser by fourth-harmonic generation (FHG) of a 1112-nm Nd:YAG amplifier in LiB3O5 (LBO) and CsB3O5 (CBO) crystals. The UV laser delivers a maximum average power of 10.3 W at 278 nm with peak power of 36.8 kW under input pump power of 41 W at 556 nm. This is, to the best of our knowledge, the highest output power at the specific UV wavelength of 278 nm. We also performed the theoretical investigation on the FHG with a model in the Gaussian approximation of both spatial and temporal profiles, especially accounting for the two-photon absorption effect in CBO crystal for the first time. The average output power, pulse width, and beam spatial distribution of the UV laser were simulated. The theoretical calculations are in close agreement with the experimental results.
Keywords:  ultraviolet lasers      frequency doubled      CsB3O5 (CBO) crystal      two-photon absorption  
Received:  17 December 2017      Revised:  05 January 2018      Accepted manuscript online: 
PACS:  42.55.Xi (Diode-pumped lasers)  
  42.65.Ky (Frequency conversion; harmonic generation, including higher-order harmonic generation)  
  42.72.Bj (Visible and ultraviolet sources)  
Fund: Project supported by the National Natural Science Foundation Program of China (Grant Nos.11504389 and 61505226),the National Key Research Development Program of China (Grant Nos.2016YFB040203 and 61535013),and the National Development Project for Major Scientific Research Facility of China (Grant No.ZDYZ2012-2).
Corresponding Authors:  Feng Yang, Yi-Ting Xu     E-mail:  yang12345yang@163.com;xuyiting1984@sina.com.cn

Cite this article: 

Miao He(何苗), Feng Yang(杨峰), Cheng Dong(董程), Zhi-Chao Wang(王志超), Lei Yuan(袁磊), Yi-Ting Xu(徐一汀), Guo-Chun Zhang(张国春), Zhi-Min Wang(王志敏), Yong Bo(薄勇), Qin-Jun Peng(彭钦军), Da-Fu Cui(崔大复), Yi-Cheng Wu(吴以成), Zu-Yan Xu(许祖彦) High-power ultraviolet 278-nm laser from fourth-harmonic generation of an Nd: YAG amplifier in CsB3O5 crystal 2018 Chin. Phys. B 27 054211

[13] Wang Z C, Yang F, Zhang G C, Bo Y, Liu S S, Xie S Y, Xu Y T, Zong N, Li F Q, Liu B L, Xu J L, Peng Q J, Zhang J Y, Cui D F, Wu Y C and Xu Z Y 2012 Opt. Lett. 37 2403
[1] Wang C, Wang G, Hicks A V, Dudley D R, Pang H and Hodgson N 2006 Proc. SPIE 6100
[14] Yang F, Liu B L, Wang Z C, Bo Y, Zhang G C, Peng Q J, Zhang J Y, Cui D F, Wu Y C and Xu Z Y 2014 IEEE J. Quantum Electron. 50 423
[2] Imai S, Matsuki K, Kikuiri N, Takayama K, Iwase O, Urata Y, Shinozaki T, Wada Y and Wada S 2010 Proc. SPIE 7580
[15] Singh S, Smith R G and Van Uitert L G 1974 Phys. Rev. B 10 2566
[3] Tamhankar A and Patel R 2011 J. Laser Appl. 23 032001
[16] Liu B L, Wang Z C, Yang F, Wang Z M, Bo Y, Yuan H T, Yuan L, Wang B S, Xu J L, Guo Y D, Peng Q J, Zhang J Y, Cui D F and Xu Z Y 2014 Chin. Opt. Lett. 12 45
[4] Liu Q, Yan X, Fu X, Gong M and Wang D 2009 Laser Phys. Lett. 6 203
[17] Liu B L, Wang Z C, Yang F, Wang Z M, Bo Y, Yuan H T, Yuan L, Wang B S, Xu J L, Guo Y D, Peng Q J, Zhang J Y, Cui D F and Xu Z Y 2014 IEEE Photonics Technology Lett. 26 969
[5] Bai Y, Li Y, Shen Z, Song D, Ren Z and Bai T 2009 Laser Phys. Lett. 6 791
[18] Arisholm G 1997 J. Opt. Soc. Am. B 14 2543
[6] Rajesh D, Yoshimura M, Eiro T, Mori Y, Sasaki T, Jayavel R, Kamimura T, Katsura T, Kojima T, Nishimae J and Yasui K 2008 Opt. Mater. 31 461
[19] Carrasco S, Saleh B E, Teich M C and Fourkas J T 2006 J. Opt. Soc. Am. B 23 2134
[7] Xie S Y, Lu Y F, Zhang X F, Le X Y, Yang C L, Wang B S and Xu Z Y 2016 Acta Phys. Sin. 65 184203(in Chinese)
[20] Sheng S C and Siegman A E 1980 Phys. Rev. A 21 599
[8] Kojima T, Konno S, Fujikawa S, Yasui K, Yoshizawa K, Mori Y, Sasaki T, Tanaka M and Okada Y 2000 Opt. Lett. 25 58
[21] Takahashi M, Osada A, Dergachev A, Moulton P F, Raduban M C, Shimizu T and Sarukura N 2010 Jpn. J. Appl. Phys. 49 080211
[9] Zhang N H, Fang S B, He P, Huang H D, Zhu J F, Tian W L, Wu H P, Pan S L, Teng H and Wei Z Y 2017 Chin. Phys. B 26 064208
[10] Friedenauer A, Markert F, Kahra S, Schmitz H, Petersen L, Kahra S, Herrmann M, Udem TH Hansch T W and Schatz T 2006 Appl. Phys. B 84 371
[22] Divall M, Osvay K, Kurdi G, Divall E J, Klebniczki J, Bohus J and Peter A 2005 Appl. Phys. B 81 1123
[11] Schmitt T, Puppe T A, Nendel A, Lison F, Kaenders W G and Flohic M L 2009 Conference on Quantum Electronics and Laser Science CLEO/QELS. Conference on IEEE 2009, p. 1
[23] Sabaeian M, Jalil-Abadi F S, Rezaee M M and Motazedian A 2014 Opt. Express 22 25615
[12] Kaneda Y, Fallahi M, Hafer J, Moloney J, Koch S, Kunert B and Stoltzet W 2009 Opt. Lett. 34 3511
[24] Wu S, Blake G A, Sun S and Yu H 2000 Proc. SPIE-The International Society for Optical Engineering 3928
[25] Takachiho K, Yoshimura M, Takahashi Y, Imade M, Sasaki T and Mori Y 2014 Opt. Mater. Express 4 559
[13] Wang Z C, Yang F, Zhang G C, Bo Y, Liu S S, Xie S Y, Xu Y T, Zong N, Li F Q, Liu B L, Xu J L, Peng Q J, Zhang J Y, Cui D F, Wu Y C and Xu Z Y 2012 Opt. Lett. 37 2403
[14] Yang F, Liu B L, Wang Z C, Bo Y, Zhang G C, Peng Q J, Zhang J Y, Cui D F, Wu Y C and Xu Z Y 2014 IEEE J. Quantum Electron. 50 423
[26] Yap Y K, Inoue T, Sakai H, Kagebayashi Y, Mori Y and Sasaki T 1998 Opt. Lett. 23 34
[15] Singh S, Smith R G and Van Uitert L G 1974 Phys. Rev. B 10 2566
[27] Yap Y K, Deki K, Kitatochi N, Mori Y and Sasakiet T 1998 Opt. Lett. 23 1016
[16] Liu B L, Wang Z C, Yang F, Wang Z M, Bo Y, Yuan H T, Yuan L, Wang B S, Xu J L, Guo Y D, Peng Q J, Zhang J Y, Cui D F and Xu Z Y 2014 Chin. Opt. Lett. 12 45
[17] Liu B L, Wang Z C, Yang F, Wang Z M, Bo Y, Yuan H T, Yuan L, Wang B S, Xu J L, Guo Y D, Peng Q J, Zhang J Y, Cui D F and Xu Z Y 2014 IEEE Photonics Technology Lett. 26 969
[18] Arisholm G 1997 J. Opt. Soc. Am. B 14 2543
[19] Carrasco S, Saleh B E, Teich M C and Fourkas J T 2006 J. Opt. Soc. Am. B 23 2134
[20] Sheng S C and Siegman A E 1980 Phys. Rev. A 21 599
[21] Takahashi M, Osada A, Dergachev A, Moulton P F, Raduban M C, Shimizu T and Sarukura N 2010 Jpn. J. Appl. Phys. 49 080211
[22] Divall M, Osvay K, Kurdi G, Divall E J, Klebniczki J, Bohus J and Peter A 2005 Appl. Phys. B 81 1123
[23] Sabaeian M, Jalil-Abadi F S, Rezaee M M and Motazedian A 2014 Opt. Express 22 25615
[24] Wu S, Blake G A, Sun S and Yu H 2000 Proc. SPIE-The International Society for Optical Engineering 3928
[25] Takachiho K, Yoshimura M, Takahashi Y, Imade M, Sasaki T and Mori Y 2014 Opt. Mater. Express 4 559
[26] Yap Y K, Inoue T, Sakai H, Kagebayashi Y, Mori Y and Sasaki T 1998 Opt. Lett. 23 34
[27] Yap Y K, Deki K, Kitatochi N, Mori Y and Sasakiet T 1998 Opt. Lett. 23 1016
[1] Computational design of ratiometric two-photon fluorescent Zn2+ probes based on quinoline and di-2-picolylamine moieties
Zhe Shao(邵哲), Wen-Ying Zhang(张纹莹), and Ke Zhao(赵珂). Chin. Phys. B, 2022, 31(5): 053302.
[2] Zebrafish imaging and two-photon fluorescence imaging using ZnSe quantum dots
Nan-Nan Zhang(张楠楠), Li-Ya Zhou(周立亚), Xiao Liu(刘潇), Zhong-Chao Wei(韦中超), Hai-Ying Liu(刘海英), Sheng Lan(兰胜), Zhao Meng(孟钊), and Hai-Hua Fan(范海华). Chin. Phys. B, 2021, 30(4): 044204.
[3] Ultrafast carrier dynamics of Cu2O thin film induced by two-photon excitation
Jian Liu(刘建), Jing Li(李敬), Kai-Jun Mu(牧凯军), Xin-Wei Shi(史新伟), Jun-Qiao Wang(王俊俏), Miao Mao(毛淼), Shu Chen(陈述), and Er-Jun Liang(梁二军). Chin. Phys. B, 2021, 30(11): 114205.
[4] Responsive mechanism and coordination mode effect of a bipyridine-based two-photon fluorescent probe for zinc ion
Han Zhang(张瀚), Zhe Shao(邵哲), Ke Zhao(赵珂). Chin. Phys. B, 2020, 29(8): 083304.
[5] Soliton evolution and control in a two-mode fiber with two-photon absorption
Qianying Li(李倩颖). Chin. Phys. B, 2020, 29(1): 014204.
[6] Responsive mechanism and molecular design of di-2-picolylamine-based two-photon fluorescent probes for zinc ions
Mei-Yu Zhu(朱美玉), Ke Zhao(赵珂), Jun Song(宋军), Chuan-Kui Wang(王传奎). Chin. Phys. B, 2018, 27(2): 023302.
[7] Up-conversion luminescence tuning in Er3+-doped ceramic glass by femtosecond laser pulse at different laser powers
Wen-Jing Cheng(程文静), Guo Liang(梁果), Ping Wu(吴萍), Shi-Hua Zhao(赵世华), Tian-Qing Jia(贾天卿), Zhen-Rong Sun(孙真荣), Shi-An Zhang(张诗按). Chin. Phys. B, 2018, 27(12): 123201.
[8] Isomerism and coordination mode effects on two-photon absorption of tris(picolyl)amine-based fluorescent probes for zinc ions
Ke Zhao(赵珂), Jun Song(宋军), Mei-Yu Zhu(朱美玉), Han Zhang(张瀚), Chuan-Kui Wang(王传奎). Chin. Phys. B, 2018, 27(10): 103301.
[9] Optical power limiting of ultrashort hyper-Gaussian pulses in cascade three-level system
Ji-Cai Liu(刘纪彩), Fen-Fen Guo(郭芬芬), Ya-Nan Zhao(赵亚男), Xing-Zhe Li(李兴哲). Chin. Phys. B, 2018, 27(10): 104209.
[10] Simulating resonance-mediated two-photon absorption enhancement in rare-earth ions by a rectangle phase modulation
Da-Long Qi(齐大龙), Ye Zheng(郑烨), Wen-Jing Cheng(程文静), Yun-Hua Yao(姚云华), Lian-Zhong Deng(邓联忠), Dong-Hai Feng(冯东海), Tian-Qing Jia(贾天卿), Zhen-Rong Sun(孙真荣), Shi-An Zhang(张诗按). Chin. Phys. B, 2018, 27(1): 013202.
[11] Responsive mechanism of three novel hypochlorous acid fluorescent probes and solvent effect on their sensing performance
Yong Zhou(周勇), Yun-Kun Wang(王云坤), Xiao-Fei Wang(王晓菲), Yu-Jin Zhang(张玉瑾), Chuan-Kui Wang(王传奎). Chin. Phys. B, 2017, 26(8): 083102.
[12] Responsive mechanism of 2-(2'-hydroxyphenyl)benzoxazole-based two-photon fluorescent probes for zinc and hydroxide ions
Zhang Yu-Jin (张玉瑾), Zhang Qiu-Yue (张秋月), Ding Hong-Juan (丁红娟), Song Xiu-Neng (宋秀能), Wang Chuan-Kui (王传奎). Chin. Phys. B, 2015, 24(2): 023301.
[13] Polarization and phase control of two-photon absorption in an isotropic molecular system
Lu Chen-Hui (卢晨晖), Zhang Hui (张晖), Zhang Shi-An (张诗按), Sun Zhen-Rong (孙真荣). Chin. Phys. B, 2012, 21(12): 123202.
[14] Influence of rotational isomerism on two-photon absorption properties of FTC chromophores
Han Guang-Chao (韩广超), Zhao Ke (赵珂), Liu Peng-Wei (刘朋伟), Zhang Li-Li (张立立 ). Chin. Phys. B, 2012, 21(11): 118201.
[15] Highly selective population of two excited states in nonresonant two-photon absorption
Zhang Hui(张晖), Zhang Shi-An(张诗按), and Sun Zhen-Rong(孙真荣) . Chin. Phys. B, 2011, 20(8): 083202.
No Suggested Reading articles found!