INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Prev
Next
|
|
|
Impact of energy straggle on proton-induced single event upset test in a 65-nm SRAM cell |
Bing Ye(叶兵)1,2,3, Jie Liu(刘杰)1, Tie-Shan Wang(王铁山)3, Tian-Qi Liu(刘天奇)1,2, Jie Luo(罗捷)1,2, Bin Wang(王斌)1,2, Ya-Nan Yin(殷亚楠)1,2, Qing-Gang Ji(姬庆刚)1,2, Pei-Pei Hu(胡培培)1,2, You-Mei Sun(孙友梅)1, Ming-Dong Hou(侯明东)1 |
1 Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China;
2 University of Chinese Academy of Sciences (UCAS), Beijing 100049, China;
3 Lanzhou University, Lanzhou 730000, China |
|
|
Abstract This paper presents a simulation study of the impact of energy straggle on a proton-induced single event upset (SEU) test in a commercial 65-nm static random access memory cell. The simulation results indicate that the SEU cross sections for low energy protons are significantly underestimated due to the use of degraders in the SEU test. In contrast, using degraders in a high energy proton test may cause the overestimation of the SEU cross sections. The results are confirmed by the experimental data and the impact of energy straggle on the SEU cross section needs to be taken into account when conducting a proton-induced SEU test in a nanodevice using degraders.
|
Received: 13 March 2017
Revised: 25 April 2016
Accepted manuscript online:
|
PACS:
|
85.30.De
|
(Semiconductor-device characterization, design, and modeling)
|
|
61.82.Fk
|
(Semiconductors)
|
|
25.40.Ep
|
(Inelastic proton scattering)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11690041 and 11675233). |
Corresponding Authors:
Jie Liu
E-mail: j.liu@impcas.ac.cn
|
About author: 0.1088/1674-1056/26/8/ |
Cite this article:
Bing Ye(叶兵), Jie Liu(刘杰), Tie-Shan Wang(王铁山), Tian-Qi Liu(刘天奇), Jie Luo(罗捷), Bin Wang(王斌), Ya-Nan Yin(殷亚楠), Qing-Gang Ji(姬庆刚), Pei-Pei Hu(胡培培), You-Mei Sun(孙友梅), Ming-Dong Hou(侯明东) Impact of energy straggle on proton-induced single event upset test in a 65-nm SRAM cell 2017 Chin. Phys. B 26 088501
|
[1] |
Heidel D F, Marshall P W, LaBel K A, Schwank J R, Rodbell K P, Hakey M C, Berg M D, Dodd P E, Friendlich M R, Phan A D, Seidleck C M, Shaneyfelt M R and Xapsos M A 2008 IEEE Trans. Nucl. Sci. 55 3394
|
[2] |
Loveless T D, Jagannathan S, Reece T, Chetia J, Bhuva B L, McCurdy M W, Massengill L W, Wen S J, Wong R and Rennie D 2011 IEEE Trans. Nucl. Sci. 58 1008
|
[3] |
Heidel D F, Marshall P W, Pellish J A, Rodbell K P, LaBel K A, Schwank J R, Rauch S E, Hakey M C, Berg M D, Castaneda C M, Dodd P E, Friendlich M R, Phan A D, Seidleck C M, Shaneyfelt M R and Xapsos M A 2009 IEEE Trans. Nucl. Sci. 56 3499
|
[4] |
Cannon E H, Cabanas-Holmen M, Wert J, Amort T, Brees R, Koehn J, Meaker B and Normand E 2010 IEEE Trans. Nucl. Sci. 57 3493
|
[5] |
Seifert N, Gill B, Pellish J A, Marshall P W and LaBel K A 2011 IEEE Trans. Nucl. Sci. 58 2711
|
[6] |
Schwank J R, Shaneyfelt M R and Dodd P E 2013 IEEE Trans. Nucl. Sci. 60 2101
|
[7] |
Dodds N A, Schwank J R, Shaneyfelt M R, Dodd P E, Doyle B L, Trinczek M, Blackmore E W, Rodbell K P, Gordon M S, Reed R A, Pellish J A, LaBel K A, Marshall P W, Swanson S E, Vizkelethy G, Deusen S V, Sexton F W and Martinez M J 2014 IEEE Trans. Nucl. Sci. 61 2904
|
[8] |
Pellish J A, Marshall P W, Rodbell K P, Gordon M S, LaBel K A, Schwank J R, Dodds N A, Castaneda C M, Berg M D, Kim H S, Phan A M and Seidleck C M 2014 IEEE Trans. Nucl. Sci. 61 2896
|
[9] |
Luo Y H, Zhang F Q, Wang Y P, Wang Y M, Guo X Q and Guo H X 2014 Acta Phys. Sin. 65 068501 (in Chinese)
|
[10] |
Luo Y H, Zhang F Q, Guo H X, Guo X Q, Zhao W, Ding L L and Wang Y M 2015 Acta Phys. Sin. 64 216103 (in Chinese)
|
[11] |
Ziegler J F, Ziegler M D and Biersack J P 2014 2010 Nucl. Instrum. Methods Phys. Res. Sect. B 268 1818
|
[12] |
Sierawski B D, Mendenhall M H, Weller R A, Reed R A, Adams J H, Watts J W and Barghouty A F 2010 IEEE Nuclear Science Symposuim & Medical Imaging Conference, October 30-November 6, 2010, Knoxville, USA, p. 1258
|
[13] |
http://www.cypress.com/?docID=46467
|
[14] |
Warren K M, Sierawski B D, Weller R A, Reed R A, Mendenhall M H, Pellish J A, Schrimpf R D, Massengill L W, Porter M E and Wilkinson J D 2007 IEEE Electron Dev. Lett. 28 180
|
[15] |
Sierawski B D, Pellish J A, Reed R A, Schrimpf R D, Warren K M, Weller R A, Mendenhall M H, Black J D, Tipton A D, Xapsos M A, Baumann R C, Deng X, Campola M J, Friendlich M R, Kim H S, Phan A M and Seidleck C M 2009 IEEE Trans. Nucl. Sci. 56 3085
|
[16] |
Tavernier P S 2010 Experimental Techniques in Nuclear and Particle Physics (Berlin: Springer) pp. 167-208
|
[17] |
Zhang Z G, Liu J, Hou M D, Sun Y M, Zhao F Z, Liu G, Han Z S, Geng C, Liu J D, Xi K, Duan J L, Yao H J, Mo D, Luo J, Gu S and Liu T Q 2013 Chin. Phys. B 22 096103
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|