Please wait a minute...
Chin. Phys. B, 2010, Vol. 19(6): 060516    DOI: 10.1088/1674-1056/19/6/060516
GENERAL Prev   Next  

Size transition of spiral waves using the pulse array method

Xie Ling-Ling(谢玲玲) and Gao Ji-Hua(高继华)
Shenzhen Key Laboratory of Special Functional Materials, College of Materials, Shenzhen University, Shenzhen 518060, China
Abstract  The domain size of spiral waves is an important issue in studies of two-dimensional (2D) spatiotemporal patterns. In this work, we use the 2D complex Ginzburg--Landau equation (CGLE) as our model and find that an initially big spiral can successfully transfer to several small spirals by applying a pulse array method. The impacts of several important factors, such as array density, controlling intensity and pulsing time, are investigated. This control approach may be useful for the control of 2D spatiotemporal patterns and has potential applications in the control of some realistic systems, such as meteorological and cardiac systems.
Keywords:  spiral wave      size transition      pulse array method  
Received:  19 November 2009      Accepted manuscript online: 
PACS:  05.45.-a (Nonlinear dynamics and chaos)  
  02.30.Jr (Partial differential equations)  
  87.19.Hh (Cardiac dynamics)  

Cite this article: 

Xie Ling-Ling(谢玲玲) and Gao Ji-Hua(高继华) Size transition of spiral waves using the pulse array method 2010 Chin. Phys. B 19 060516

[1] Diercks J W and Anthes R A 1976 J. Atmos. Sci. 33 959
[2] Winfree A T 1987 When Time Breaks Down (Cambridge: Princeton University Press)
[3] Yu L C, Ma J, Zhang G Y and Chen Y 2008 Chin. Phys. Lett. 25 2706
[4] Jakubith S, Rotermund H H, Engel W, Oertzen A von and Ertl G 1990 Phys. Rev. Lett. 65 3013
[5] Ecke R E, Hu Y, Mainieri R and Ahlers G 1995 Science 269 1704
[6] Vanag V K and Epstein I R 2001 Science 294 835
[7] Gong Y and Christini D J 2003 Phys. Rev. Lett. 90 088302
[8] Zaritski R M and Pertsov A M 2002 Phys. Rev. E 66 066120
[9] Goryachev A, Chate H and Kapral R 1998 Phys. Rev. Lett . 80 873
[10] Yuan G Y, Zhang G C, Wang G R and Chen S G 2005 Commun. Theor Phys. 43 459
[11] Xiao J H, Hu G and Hu B 2004 Chin. Phys. Lett. 21 1224
[12] Alonso S, Sagues F and Mikhailov A S 2003 Science 299 1722
[13] Zhang H, Hu B and Hu G 2003 Phys. Rev. E 68 026134
[14] Gan Z N, Ma J, Zhang G Y and Chen Y 2008 Acta Phys. Sin. 57 5400 (in Chinese)
[15] Bar M and Eiswirth M 1993 Phys. Rev. E 48 R1635
[16] Brusch L, Torcini A and Bar M 2003 Phys. Rev. Lett. 91 108302
[17] Ouyang Q and Flesselles J M 1996 Nature 379 143
[18] Bar M and Or-Guil M 1999 Phys. Rev. Lett. 82 1160
[19] Liu F C, Wang X F, Li X C and Dong L F 2007 Chin. Phys. 16 2640
[20] Yuan G Y, Yang S P, Wang G R and Chen S G 2008 Chin. Phys. B 17 1925
[21] Steinbock O, Schutze J and Muller S C 1992 Phys. Rev. Lett . 68 248
[22] Bohr T, Huber G and Ott E 1997 Physica D 106 95
[23] Zhan M, Luo J M and Gao J H 2007 Phys. Rev. E 75 016214
[24] Luo J M, Zhang B S and Zhan M 2009 Chaos 19 033133
[25] Hu G, Xiao J H, Chua L O and Pivka L 1998 Phys. Rev. Lett. 80 1884
[26] Kuramoto Y 1984 Chemical Oscillations, Waves and Turbulence (New York: Springer)
[27] Cross M and Hohenberg P 1993 Rev. Mod. Phys. 65 851
[28] Aranson I and Kramer L 2002 Rev. Mod. Phys . 74 99
[29] Hagan P S 1982 SIAM (Soc. Ind. Appl. Math.) J. Appl. Math. 42 762
[30] Gao J H and Zhan M 2007 Phys. Lett. A 371 96
[31] Eguiluz V, Hernandez-Garcia E and Piro O 1999 Int. J. Bifur. Chaos 9 2209
[32] Lugovtsov B A 2002 J. Appl. Mech. Ech. Phys. 13 237
[1] Applying a global pulse disturbance to eliminate spiral waves in models of cardiac muscle
Jian Gao(高见), Changgui Gu(顾长贵), and Huijie Yang(杨会杰). Chin. Phys. B, 2021, 30(7): 070501.
[2] Unpinning the spiral waves by using parameter waves
Lu Peng(彭璐) and Jun Tang(唐军). Chin. Phys. B, 2021, 30(5): 058202.
[3] Exploring the role of inhibitory coupling in duplex networks
Cui-Yun Yang(杨翠云), Guo-Ning Tang(唐国宁), Hai-Ying Liu(刘海英). Chin. Phys. B, 2017, 26(8): 088201.
[4] Effects of abnormal excitation on the dynamics of spiral waves
Min-Yi Deng(邓敏艺), Xue-Liang Zhang(张学良), Jing-Yu Dai(戴静娱). Chin. Phys. B, 2016, 25(1): 010504.
[5] A cellular automaton model for the ventricular myocardium considering the layer structure
Deng Min-Yi (邓敏艺), Dai Jing-Yu (戴静娱), Zhang Xue-Liang (张学良). Chin. Phys. B, 2015, 24(9): 090503.
[6] Motion of spiral tip driven by local forcing in excitable media
Liu Gui-Quan (刘贵泉), Ying He-Ping (应和平). Chin. Phys. B, 2014, 23(5): 050502.
[7] The effect of cellular aging on the dynamics of spiral waves
Deng Min-Yi (邓敏艺), Chen Xi-Qiong (陈茜琼), Tang Guo-Ning (唐国宁). Chin. Phys. B, 2014, 23(12): 120503.
[8] The influence of long-range links on spiral waves and its application for control
Qian Yu (钱郁). Chin. Phys. B, 2012, 21(8): 088201.
[9] Elimination of spiral waves and spatiotemporal chaos by the synchronization transmission technology of network signals
Zhang Qing-Ling(张庆灵), Lü Ling(吕翎), and Zhang Yi(张翼) . Chin. Phys. B, 2011, 20(9): 090514.
[10] Spiral-wave dynamics in excitable medium with excitability modulated by rectangle wave
Yuan Guo-Yong(袁国勇) . Chin. Phys. B, 2011, 20(4): 040503.
[11] Synchronizing spiral waves in a coupled Rössler system
Gao Jia-Zhen(高加振), Yang Shu-Xin(杨舒心), Xie Ling-Ling(谢玲玲), and Gao Ji-Hua(高继华) . Chin. Phys. B, 2011, 20(3): 030505.
[12] Lattice Boltzmann simulation for the energy and entropy of excitable systems
Deng Min-Yi(邓敏艺), Tang Guo-Ning(唐国宁), Kong Ling-Jiang(孔令江), and Liu Mu-Ren(刘慕仁) . Chin. Phys. B, 2011, 20(2): 020510.
[13] Doppler instability of antispiral waves in discrete oscillatory reaction-diffusion media
Qian Yu(钱郁), Huang Xiao-Dong(黄晓东), Liao Xu-Hong(廖旭红), and Hu Gang(胡岗). Chin. Phys. B, 2010, 19(5): 050513.
[14] Distributed predictive control of spiral wave in cardiac excitable media
Gan Zheng-Ning(甘正宁) and Cheng Xin-Ming(成新明). Chin. Phys. B, 2010, 19(5): 050514.
[15] Controlling intracellular Ca2+ spiral waves by the local agonist in the cell membrane
Qiu Kang(仇康), Tang Jun(唐军), Ma Jun(马军), and Luo Ji-Ming(罗继明). Chin. Phys. B, 2010, 19(3): 030508.
No Suggested Reading articles found!