Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(8): 084701    DOI: 10.1088/1674-1056/26/8/084701
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

A multicomponent multiphase lattice Boltzmann model with large liquid-gas density ratios for simulations of wetting phenomena

Qing-Yu Zhang(张庆宇)1, Dong-Ke Sun(孙东科)2, Ming-Fang Zhu(朱鸣芳)1
1 Jiangsu Key Laboratory for Advanced Metallic Materials, School of Materials Science and Engineering, Southeast University, Nanjing 211189, China;
2 School of Mechanical Engineering, Southeast University, Nanjing 211189, China
Abstract  

A multicomponent multiphase (MCMP) pseudopotential lattice Boltzmann (LB) model with large liquid-gas density ratios is proposed for simulating the wetting phenomena. In the proposed model, two layers of neighboring nodes are adopted to calculate the fluid-fluid cohesion force with higher isotropy order. In addition, the different-time-step method is employed to calculate the processes of particle propagation and collision for the two fluid components with a large pseudo-particle mass contrast. It is found that the spurious current is remarkably reduced by employing the higher isotropy order calculation of the fluid-fluid cohesion force. The maximum spurious current appearing at the phase interfaces is evidently influenced by the magnitudes of fluid-fluid and fluid-solid interaction strengths, but weakly affected by the time step ratio. The density ratio analyses show that the liquid-gas density ratio is dependent on both the fluid-fluid interaction strength and the time step ratio. For the liquid-gas flow simulations without solid phase, the maximum liquid-gas density ratio achieved by the present model is higher than 1000:1. However, the obtainable maximum liquid-gas density ratio in the solid-liquid-gas system is lower. Wetting phenomena of droplets contacting smooth/rough solid surfaces and the dynamic process of liquid movement in a capillary tube are simulated to validate the proposed model in different solid-liquid-gas coexisting systems. It is shown that the simulated intrinsic contact angles of droplets on smooth surfaces are in good agreement with those predicted by the constructed LB formula that is related to Young's equation. The apparent contact angles of droplets on rough surfaces compare reasonably well with the predictions of Cassie's law. For the simulation of liquid movement in a capillary tube, the linear relation between the liquid-gas interface position and simulation time is observed, which is identical to the analytical prediction. The simulation results regarding the wetting phenomena of droplets on smooth/rough surfaces and the dynamic process of liquid movement in the capillary tube demonstrate the quantitative capability of the proposed model.

Keywords:  multicomponent multiphase lattice Boltzmann model      large density ratio      contact angle      capillary flow  
Received:  18 January 2017      Revised:  30 March 2017      Accepted manuscript online: 
PACS:  47.11.-j (Computational methods in fluid dynamics)  
  02.70.-c (Computational techniques; simulations)  
  47.55.-t (Multiphase and stratified flows)  
  68.08.-p (Liquid-solid interfaces)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos. 51371051 and 51306037) and the Scientific Research Foundation of Graduate School of Southeast University, China (Grant No. YBJJ1627).

Corresponding Authors:  Qing-Yu Zhang     E-mail:  qingyu.zhang1988@foxmail.com
About author:  0.1088/1674-1056/26/8/

Cite this article: 

Qing-Yu Zhang(张庆宇), Dong-Ke Sun(孙东科), Ming-Fang Zhu(朱鸣芳) A multicomponent multiphase lattice Boltzmann model with large liquid-gas density ratios for simulations of wetting phenomena 2017 Chin. Phys. B 26 084701

[1] Chen L, Kang Q, Mu Y, He Y L and Tao W Q 2014 Int. J. Heat Mass Transfer 76 210
[2] Li Q, Luo K H, Kang Q J, He Y L, Chen Q and Liu Q 2016 Prog. Energy Combust. Sci. 52 62
[3] Succi S 2015 Europhys. Lett. 109 50001
[4] Yong W A, Zhao W and Luo L S 2016 Phys. Rev. E 93 033310
[5] Sun D, Zhu M, Wang J and Sun B 2016 Int. J. Heat Mass Transfer 94 474
[6] Sun D, Wang Y, Dong A and Sun B 2016 Int. J. Heat Mass Transfer 94 306
[7] Sun D, Zhu M, Pan S and Raabe D 2009 Acta Mater. 57 1755
[8] Yang K and Guo Z 2016 Phys. Rev. E 93 043303
[9] Zheng H W, Shu C and Chew Y T 2006 J. Comput. Phys. 218 353
[10] Liang H, Li Q X, Shi B C and Chai Z H 2016 Phys. Rev. E 93 033113
[11] Zhang Q Y, Sun D K, Zhang Y F and Zhu M F 2014 Langmuir 30 12559
[12] Farokhirad S, Morris J F and Lee T 2015 Phys. Fluids 27 102102
[13] Patrick Jansen H, Sotthewes K, Zandvliet H J W and Kooij E S 2016 Appl. Surf. Sci. 361 122
[14] Xie C Y, Zhang J Y, Bertola V and Wang M R 2016 J. Colloid Interface Sci. 463 317
[15] Zhang Q Y, Sun D K, Zhang Y F and Zhu M F 2016 Chin. Phys. B 25 066401
[16] Wang Y, Shu C and Yang L M 2015 J. Comput. Phys. 302 41
[17] Raman K A, Jaiman R K, Lee T S and Low H T 2015 Comput. Fluids 107 285
[18] Shan X W and Chen H D 1993 Phys. Rev. E 47 1815
[19] Sukop M C and Thorne D T 2006 Lattice Boltzmann Modeling: An Introduction for Geoscientists and Engineers (Heidelberg, Berlin, New York: Springer) pp. 112-115
[20] Khajepor S, Wen J and Chen B 2015 Phys. Rev. E 91 023301
[21] Yuan P and Schaefer L 2006 Phys. Fluids 18 042101
[22] Chen X P, Zhong C W and Yuan X L 2011 Comput. Math. Appl. 61 3577
[23] Hu A, Li L, Chen S, Liao Q and Zeng J 2013 Int. J. Heat Mass Transfer 67 159
[24] Connington K and Lee T 2012 J. Mech. Sci. Technol. 26 3857
[25] Shan X 2006 Phys. Rev. E 73 047701
[26] Sbragaglia M, Benzi R, Biferale L, Succi S, Sugiyama K and Toschi F 2007 Phys. Rev. E 75 026702
[27] Falcucci G, Chibbaro S, Succi S, Shan X and Chen H 2008 Europhys. Lett. 82 24005
[28] Falcucci G, Ubertini S and Succi S 2010 Soft Matter 6 4357
[29] Yu Z and Fan L S 2009 J. Comput. Phys. 228 6456
[30] Yu Z, Yang H and Fan L S 2011 Chem. Eng. Sci. 66 3441
[31] Huang H B, Krafczyk M and Lu X Y 2011 Phys. Rev. E 84 046710
[32] Sun K, Wang T Y, Jia M and Xiao G 2012 Physica A 391 3895
[33] Lycett-Brown D and Luo K H 2015 Phys. Rev. E 91 023305
[34] Zarghami A, Looije N and Van den Akker H 2015 Phys. Rev. E 92 023307
[35] Hu A, Li L and Uddin R 2015 J. Comput. Phys. 294 78
[36] Li Q, Luo K H and Li X J 2013 Phys. Rev. E 87 053301
[37] Zhang D, Papadikis K and Gu S 2014 Int. J. Multiphase Flow 64 11
[38] Xu A, Zhao T S, An L and Shi L 2015 Int. J. Heat Fluid Flow 56 261
[39] Liu M, Yu Z, Wang T, Wang J and Fan L S 2010 Chem. Eng. Sci. 65 5615
[40] Chen L, Kang Q, Tang Q, Robinson B A, He Y L and Tao W Q 2015 Int. J. Heat Mass Transfer 85 935
[41] Bao J and Schaefer L 2013 Appl. Math. Model. 37 1860
[42] Yang J H and Boek E S 2013 Comput. Math. Appl. 65 882
[43] Mccracken M E and Abraham J 2005 Phys. Rev. E 71 046704
[44] Chai Z H and Zhao T S 2012 Acta Mech. Sin. 28 983
[45] Zheng L, Guo Z, Shi B and Zheng C 2010 Phys. Rev. E 81 016706
[46] Wang N, Liu H and Zhang C 2016 J. Comput. Sci. 17 340
[47] Huang H B, Thorne D T, Schaap M G and Sukop M C 2007 Phys. Rev. E 76 066701
[48] Li Q, Luo K H, Kang Q J and Chen Q 2014 Phys. Rev. E 90 053301
[49] Frank X, Perré P and Li H Z 2015 Phys. Rev. E 91 052405
[50] Pooley C M, Kusumaatmaja H and Yeomans J M 2009 Eur. Phys. J. Spec. Top. 171 63
[51] Diotallevi F, Biferale L, Chibbaro S, Lamura A, Pontrelli G, Sbragaglia M, Succi S and Toschi F 2009 Eur. Phys. J. Spec. Top. 166 111
[52] Liu H, Ju Y, Wang N, Xi G and Zhang Y 2015 Phys. Rev. E 92 033306
[1] Water contact angles on charged surfaces in aerosols
Yu-Tian Shen(申钰田), Ting Lin(林挺), Zhen-Ze Yang(杨镇泽), Yong-Feng Huang(黄永峰), Ji-Yu Xu(徐纪玉), and Sheng Meng(孟胜). Chin. Phys. B, 2022, 31(5): 056801.
[2] Dielectrowetting actuation of droplet: Theory and experimental validation
Yayan Huang(黄亚俨), Rui Zhao(赵瑞), Zhongcheng Liang(梁忠诚), Yue Zhang(张月), Meimei Kong(孔梅梅), and Tao Chen(陈陶). Chin. Phys. B, 2021, 30(10): 106801.
[3] Molecular simulation study of the adhesion work for water droplets on water monolayer at room temperature
Mengyang Qu(屈孟杨), Bo Zhou(周波), and Chunlei Wang(王春雷). Chin. Phys. B, 2021, 30(10): 106804.
[4] A mass-conserved multiphase lattice Boltzmann method based on high-order difference
Zhang-Rong Qin(覃章荣), Yan-Yan Chen(陈燕雁), Feng-Ru Ling(凌风如), Ling-Juan Meng(孟令娟), Chao-Ying Zhang(张超英). Chin. Phys. B, 2020, 29(3): 034701.
[5] Wetting failure condition on rough surfaces
Feng-Chao Yang(杨冯超), Xiao-Peng Chen(陈效鹏). Chin. Phys. B, 2019, 28(4): 044701.
[6] The properties of surface nanobubbles formed on different substrates
Zheng-Lei Zou(邹正磊), Nan-Nan Quan(权楠楠), Xing-Ya Wang(王兴亚), Shuo Wang(王硕), Li-Min Zhou(周利民), Jun Hu(胡钧), Li-Juan Zhang(张立娟), Ya-Ming Dong(董亚明). Chin. Phys. B, 2018, 27(8): 086803.
[7] Mechanism of contact angle saturation and an energy-based model for electrowetting
Rui Zhao(赵瑞), Zhong-Cheng Liang(梁忠诚). Chin. Phys. B, 2016, 25(6): 066801.
[8] Contact angle hysteresis in electrowetting on dielectric
Zhao Rui (赵瑞), Liu Qi-Chao (刘启超), Wang Ping (王评), Liang Zhong-Cheng (梁忠诚). Chin. Phys. B, 2015, 24(8): 086801.
[9] Dynamic surface wettability of three-dimensional graphene foam
Huang Wen-Bin (黄文斌), Wang Guang-Long (王广龙), Gao Feng-Qi (高凤岐), Qiao Zhong-Tao (乔中涛), Wang Gang (王刚), Chen Min-Jiang (陈闽江), Tao Li (陶立), Deng Ya (邓娅), Sun Lian-Feng (孙连峰). Chin. Phys. B, 2014, 23(4): 046802.
[10] A new model for the formation of contact angle and contact angle hysteresis
Gong Mao-Gang(公茂刚), Liu Yuan-Yue(刘远越), and Xu Xiao-Liang(许小亮). Chin. Phys. B, 2010, 19(10): 106801.
[11] Simulation solution for micro droplet impingementon a flat dry surface
Sun Zhen-Hai(孙震海) and Han Rui-Jing(韩瑞津). Chin. Phys. B, 2008, 17(9): 3185-3188.
No Suggested Reading articles found!