Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(7): 074301    DOI: 10.1088/1674-1056/26/7/074301
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Bubble acoustical scattering cross section under multi-frequency acoustic excitation

Jie Shi(时洁)1,2, De-sen Yang(杨德森)1,2, Hao-yang Zhang(张昊阳)1,2, Sheng-guo Shi(时胜国)1,2, Song Li(李松)1,2, Bo Hu(胡博)1,2
1 Acoustic Science and Technology Laboratory, Harbin Engineering University, Harbin 150001, China;
2 College of Underwater Acoustic Engineering, Harbin Engineering University, Harbin 150001, China
Abstract  

The acoustical scattering cross section is usually employed to evaluate the scattering ability of the bubbles when they are excited by the incident acoustic waves. This parameter is strongly related to many important applications of performance prediction for search sonar or underwater telemetry, acoustical oceanography, acoustic cavitation, volcanology, and medical and industrial ultrasound. In the present paper, both the analytical and numerical analysis results of the acoustical scattering cross section of a single bubble under multi-frequency excitation are obtained. The nonlinear characteristics (e.g., harmonics, subharmonics, and ultraharmonics) of the scattering cross section curve under multi-frequency excitation are investigated compared with single-frequency excitation. The influence of several paramount parameters (e.g., bubble equilibrium radius, acoustic pressure amplitude, and acoustic frequencies) in the multi-frequency system on the predictions of scattering cross section is discussed. It is shown that the combination resonances become significant in the multi-frequency system when the acoustic power is big enough, and the acoustical scattering cross section is promoted significantly within a much broader range of bubble sizes and acoustic frequencies due to the generation of more resonances.

Keywords:  acoustical scattering cross section      bubbles      multi-frequency excitaion      nonlinear characteristics  
Received:  08 February 2017      Revised:  13 March 2017      Accepted manuscript online: 
PACS:  43.25.Rq (Solitons, chaos)  
  43.25.Ts (Nonlinear acoustical and dynamical systems)  
  43.25.Yw (Nonlinear acoustics of bubbly liquids)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant No.11674074) and the Program for Changjiang Scholars and Innovative Research Team in University,China (Grant No.IRT1228).

Corresponding Authors:  Hao-yang Zhang     E-mail:  zhanghaoyang@hrbeu.edu.cn

Cite this article: 

Jie Shi(时洁), De-sen Yang(杨德森), Hao-yang Zhang(张昊阳), Sheng-guo Shi(时胜国), Song Li(李松), Bo Hu(胡博) Bubble acoustical scattering cross section under multi-frequency acoustic excitation 2017 Chin. Phys. B 26 074301

[1] Ainslie M A and Leighton T G 2011 J. Acoust. Soc. Am. 130 3184
[2] Ainslie M A and Leighton T G 2009 J. Acoust. Soc. Am. 126 2163
[3] Keiffer R S, Novarini J C and Norton G V 1997 J. Acoust. Soc. Am. 97 227
[4] Trevorrow M V 2003 J. Acoust. Soc. Am. 114 2672
[5] Vossen R V and Ainslie M A 2011 J. Acoust. Soc. Am. 130 3413
[6] Vagle S and Farmer D M 1992 J. Atmos. Oceanic Technol. 9 630
[7] Zhang Y N 2013 J. Fluids Eng. 135 091301
[8] Shi J, Yang D S, Shi S G, Hu B, Zhang H Y and Hu S Y 2016 Chin. Phys. B 25 024304
[9] Wijngaarden LV 1972 Ann. Rev. Fluid Mech. 4 369
[10] Commander K W and Prosperetti A 1989 J. Acoust. Soc. Am. 85 732
[11] d'Agostino L and Brennen C E 1988 J. Acoust. Soc. Am. 84 2126
[12] Ma Q Y, Qiu Y Y, Huang B, Zhang D and Gong X F. 2010 Chin. Phys. B 19 094301
[13] Newhouse V L and Shankar P M 1984 J. Acoust. Soc. Am. 75 1473
[14] Phelps A D and Leighton T G 1994 Investigations into the use of two frequency excitation to accurately determine bubble sizes, in:Bubble Dynamics and Interface Phenomena (Springer, Netherlands) pp. 475–484
[15] Phelps A D, Ramble D G and Leighton T G 1997 J. Acoust. Soc. Am. 101 1981
[16] Sutin A M, Yoon S W, Kim E J and Didenkulov I N 1998 J. Acoust. Soc. Am. 103 2377
[17] Vagle S and Farmer D M 1998 IEEE J. Oceanic Eng. 23 211
[18] Wyczalkowski M and Szeri A J 1998 J. Acoust. Soc. Am. 113 3073
[19] Zheng H, Mukdadi O, Kim H, Hertzberg J R and Shandas R 2005 Ultrasound Med. Biol. 31 99
[20] Zhang Y N 2012 Int. Commun. Heat. Mass. Transf. 39 1496
[21] Zhang Y N, Du X, Xian H and Wu Y 2015 Ultrason. Sonochem. 23 16
[22] Zhang Y N and Li S C 2015 Ultrason. Sonochem. 26 437
[23] Zhang Y N and Li S C 2017 Ultrason. Sonochem. 35 431
[24] Keller J B and Miksis M 1980 J. Acoust. Soc. Am. 68 628
[25] Lauterborn W and Kurz T 2010 Rep. Prog. Phys. 73 106501
[26] Zhang Y N 2012 Analysis of Radial Oscillations of Gas Bubbles in Newtonian or Viscoelastic Mediums under Acoustic Excitation (Ph. D. Thesis, University of Warwick)
[27] Naugolnykh K A and Ostrovsky L A 1998 Nonlinear Wave Processes in Acoustics (New York:Cambridge University Press) pp. 16–20, 261–265
[1] Formation of nanobubbles generated by hydrate decomposition: A molecular dynamics study
Zilin Wang(王梓霖), Liang Yang(杨亮), Changsheng Liu(刘长生), and Shiwei Lin(林仕伟). Chin. Phys. B, 2023, 32(2): 023101.
[2] Current-driven dynamics of skyrmion bubbles in achiral uniaxial magnets
Yaodong Wu(吴耀东), Jialiang Jiang(蒋佳良), and Jin Tang(汤进). Chin. Phys. B, 2022, 31(7): 077504.
[3] Effect of nonlinear translations on the pulsation of cavitation bubbles
Lingling Zhang(张玲玲), Weizhong Chen(陈伟中), Yang Shen(沈阳), Yaorong Wu(武耀蓉), Guoying Zhao(赵帼英), and Shaoyang Kou(寇少杨). Chin. Phys. B, 2022, 31(4): 044303.
[4] Nonlinear oscillation characteristics of magnetic microbubbles under acoustic and magnetic fields
Lixia Zhao(赵丽霞), Huimin Shi(史慧敏), Isaac Bello, Jing Hu(胡静), Chenghui Wang(王成会), and Runyang Mo(莫润阳). Chin. Phys. B, 2022, 31(3): 034302.
[5] Enrichment of microplastic pollution by micro-nanobubbles
Jing Wang(王菁), Zihan Wang(王子菡), Fangyuan Pei(裴芳源), and Xingya Wang(王兴亚). Chin. Phys. B, 2022, 31(11): 118104.
[6] In-situ TEM observation of the evolution of helium bubbles in Mo during He+ irradiation and post-irradiation annealing
Yi-Peng Li(李奕鹏), Guang Ran(冉广), Xin-Yi Liu(刘歆翌), Xi Qiu(邱玺), Qing Han(韩晴), Wen-Jie Li(李文杰), and Yi-Jia Guo(郭熠佳). Chin. Phys. B, 2021, 30(8): 086109.
[7] Comparison of helium bubble formation in F82H, ODS, SIMP and T91 steels irradiated by Fe and He ions simultaneously
Bingsheng Li(李炳生), Zhen Yang(杨振), Shuai Xu(徐帅), Kongfang Wei (魏孔芳), Zhiguang Wang(王志光), Tielong Shen(申铁龙), Tongmin Zhang(张桐民), and Qing Liao(廖庆). Chin. Phys. B, 2021, 30(3): 036102.
[8] Multi-bubble motion behavior of uniform magnetic field based on phase field model
Chang-Sheng Zhu(朱昶胜), Zhen Hu(胡震), Kai-Ming Wang(王凯明). Chin. Phys. B, 2020, 29(3): 034702.
[9] The properties of surface nanobubbles formed on different substrates
Zheng-Lei Zou(邹正磊), Nan-Nan Quan(权楠楠), Xing-Ya Wang(王兴亚), Shuo Wang(王硕), Li-Min Zhou(周利民), Jun Hu(胡钧), Li-Juan Zhang(张立娟), Ya-Ming Dong(董亚明). Chin. Phys. B, 2018, 27(8): 086803.
[10] Interaction between encapsulated microbubbles: A finite element modelling study
Chen-Liang Cai(蔡晨亮), Jie Yu(于洁), Juan Tu(屠娟), Xia-Sheng Guo(郭霞生), Pin-Tong Huang(黄品同), Dong Zhang(章东). Chin. Phys. B, 2018, 27(8): 084302.
[11] Lorentz transmission electron microscopy studies on topological magnetic domains
Li-Cong Peng(彭丽聪), Ying Zhang(张颖), Shu-Lan Zuo(左淑兰), Min He(何敏), Jian-Wang Cai(蔡建旺), Shou-Guo Wang(王守国), Hong-Xiang Wei(魏红祥), Jian-Qi Li(李建奇), Tong-Yun Zhao(赵同云), Bao-Gen Shen(沈保根). Chin. Phys. B, 2018, 27(6): 066802.
[12] Drag reduction characteristics of heated spheres falling into water
Jia-Chuan Li(李佳川), Ying-Jie Wei(魏英杰), Cong Wang(王聪), Wei-Xue Xia(夏维学). Chin. Phys. B, 2018, 27(12): 124703.
[13] Study on shock wave-induced cavitation bubbles dissolution process
Huan Xu(许欢), Peng-Fei Fan(范鹏飞), Yong Ma(马勇), Xia-Sheng Guo(郭霞生), Ping Yang(杨平), Juan Tu(屠娟), Dong Zhang(章东). Chin. Phys. B, 2017, 26(2): 024301.
[14] Helium nano-bubble bursting near the nickel surface
Heng-Feng Gong(龚恒风), Min Liu(刘敏), Fei Gao(高飞), Rui Li(李锐), Yan Yan(严岩), Heng Huang(黄恒), Tong Liu(刘彤), Qi-Sen Ren(任啟森). Chin. Phys. B, 2017, 26(11): 113401.
[15] Interfacial nanobubbles produced by long-time preserved cold water
Li-Min Zhou(周利民), Shuo Wang(王硕), Jie Qiu(邱杰), Lei Wang(王磊), Xing-Ya Wang(王兴亚), Bin Li(李宾), Li-Juan Zhang(张立娟), Jun Hu(胡钧). Chin. Phys. B, 2017, 26(10): 106803.
No Suggested Reading articles found!