Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(6): 060305    DOI: 10.1088/1674-1056/26/6/060305
GENERAL Prev   Next  

Realization of quantum permutation algorithm in high dimensional Hilbert space

Dong-Xu Chen(陈东旭)1, Rui-Feng Liu(刘瑞丰)1, Pei Zhang(张沛)1,2, Yun-Long Wang(王云龙)1, Hong-Rong Li(李宏荣)1, Hong Gao(高宏)1, Fu-Li Li(李福利)1
1 Key Laboratory of Quantum Information and Quantum Optoelectronic Devices, School of Science, Xi'an Jiaotong University, Xi'an 710049, China;
2 Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei 230026, China
Abstract  Quantum algorithms provide a more efficient way to solve computational tasks than classical algorithms. We experimentally realize quantum permutation algorithm using light's orbital angular momentum degree of freedom. By exploiting the spatial mode of photons, our scheme provides a more elegant way to understand the principle of quantum permutation algorithm and shows that the high dimension characteristic of light's orbital angular momentum may be useful in quantum algorithms. Our scheme can be extended to higher dimension by introducing more spatial modes and it paves the way to trace the source of quantum speedup.
Keywords:  quantum permutation algorithm      orbital angular momentum      Fourier transformation  
Received:  05 January 2017      Revised:  24 March 2017      Accepted manuscript online: 
PACS:  03.67.Ac (Quantum algorithms, protocols, and simulations)  
  03.67.-a (Quantum information)  
  42.50.-p (Quantum optics)  
Fund: Project supported by the Fundamental Research Funds for the Central Universities and the National Natural Science Foundation of China (Grant Nos. 11374008, 11374238, 11374239, and 11534008).
Corresponding Authors:  Pei Zhang     E-mail:  zhangpei@mail.ustc.edu.cn

Cite this article: 

Dong-Xu Chen(陈东旭), Rui-Feng Liu(刘瑞丰), Pei Zhang(张沛), Yun-Long Wang(王云龙), Hong-Rong Li(李宏荣), Hong Gao(高宏), Fu-Li Li(李福利) Realization of quantum permutation algorithm in high dimensional Hilbert space 2017 Chin. Phys. B 26 060305

[1] Feynman R P 1982 Int. J. Theor. Phys. 21 467
[2] Montanaro A 2016 npj Quantum Information 2 15023
[3] Deutsch D 1985 Proc. R. Soc. Lond. A 400 97
[4] Jozsa R and Deutsch D 1994 Proc. R. Soc. A 439 553
[5] Zhang P, Liu R F, Huang Y F, Gao H and Li F L 2012 Phys. Rev. A 82 064302
[6] Shor P W 1994 IEEE Comp. Soc. 11 124
[7] Martin-Lopez E, Laing A, Lawson T, Alvarez R, Zhou X Q and O'Brien J L 2012 Nat. Photon. 6 773
[8] Grover L K 1997 Phys. Rev. Lett. 79 325
[9] Li T, Bao W, Lin W, Zhang H and Fu X 2014 Chin. Phys. Lett. 31 050301
[10] Zhang Y, Bao W, Wang X and Fu X 2015 Chin. Phys. B 24 110309
[11] Lloyd S 1996 Science 273 1073
[12] Buluta I and Nori F 2009 Science 326 108
[13] Harrow A W, Hassidim A and Lloyd S 2009 Phys. Rev. Lett. 103 150502
[14] Cai X D, Weedbrook C, Su Z E, Chen M C, Gu M, Zhu M J, Li L, Liu N L, Lu C Y and Pan J W 2013 Phys. Rev. Lett. 110 230501
[15] Pan J, Cao Y, Yao X, Li Z, Ju C, Chen H, Peng X, Kais S and Du J 2014 Phys. Rev. A 89 022313
[16] Bian Z, Chudak F, Israel R, Lackey B, Macready W G and Roy A 2016 arXiv: 1603.03111 [quan-ph]
[17] Amin M 2015 Phys. Rev. A 92 052323
[18] Howard M, Wallman J, Veitch V and Emerson J 2014 Nature 510 351
[19] Gedik Z, Silva I A, Çakmak B, Karpat G, Gé Vidoto E L, Soares-Pinto D O, deAzevedo E R and Fanchini F F 2015 Sci. Rep. 5 14671
[20] Dogra S, Arvind and Dorai K 2014 Phys. Lett. A 378 3452
[21] Zhan X, Li J, Qin H, Bian Z and Xue P 2015 Opt. Express 23 18422
[22] Wang F, Wang Y, Liu R, Chen D, Zhang P, Gao H and Li F 2015 Sci. Rep. 5 10995
[23] Nielsen M A and Chuang I L 2013 2000 Quantum computation and quantum information (Cambridge: Cambridge University Press)
[24] Mirhosseini M, Mangna-Loaiza O S, Chen C, Rodenburg B, Malik M and Boyd R W Opt. Express 21 30196
[25] Nagali E, Sciarrino F, De Martini F, Marrucci L, Piccirillo B, Karimi E and Santamato E 2009 Phys. Rev. Lett. 103 013601
[26] Mair A, Vaziri A, Weihs G and Zeilinger A 2001 Nature 412 313
[27] Xu Y, Huang Y, Hu L, Zhang P, Wei D, Li H, Gao H and Li F 2013 Chin. Phys. Lett. 30 100304
[28] Liu R, Zhang P, Gao H and Li F 2012 Chin. Phys. Lett. 29 124203
[29] Wang L, Zhao S, Gong L and Cheng W 2015 Chin. Phys. B 24 120307
[30] Allen L, Beijersbergen M W, Spreeuw R J C and Woerdman J P 1992 Phys. Rev. A 45 8185
[31] Leach J, Padgett M J, Barnett S M, Franke-Arnold S and Courtial J 2002 Phys. Rev. Lett. 88 257901
[32] Fu D, Jia J, Zhou Y, Chen D, Gao H, Li F and Zhang P 2015 Acta Phys. Sin 64 130704 (in Chinese)
[33] Schlederer F, Krenn M, Fickler R, Malik M and Zeilinger A 2016 New J. Phys. 18 043019
[34] Krenn M, Malik M, Fickler R, Lapkiewicz R and Zeilinger A 2016 Phys. Rev. Lett. 116 090405
[1] Diffraction deep neural network based orbital angular momentum mode recognition scheme in oceanic turbulence
Hai-Chao Zhan(詹海潮), Bing Chen(陈兵), Yi-Xiang Peng(彭怡翔), Le Wang(王乐), Wen-Nai Wang(王文鼐), and Sheng-Mei Zhao(赵生妹). Chin. Phys. B, 2023, 32(4): 044208.
[2] Real-time observation of soliton pulsation in net normal-dispersion dissipative soliton fiber laser
Xu-De Wang(汪徐德), Xu Geng(耿旭), Jie-Yu Pan(潘婕妤), Meng-Qiu Sun(孙梦秋), Meng-Xiang Lu(陆梦想), Kai-Xin Li(李凯芯), and Su-Wen Li(李素文). Chin. Phys. B, 2023, 32(2): 024210.
[3] Asymmetrical spiral spectra and orbital angular momentum density of non-uniformly polarized vortex beams in uniaxial crystals
Ling-Yun Shu(舒凌云), Ke Cheng(程科), Sai Liao(廖赛), Meng-Ting Liang(梁梦婷), and Ceng-Hao Yang(杨嶒浩). Chin. Phys. B, 2023, 32(2): 024211.
[4] Transmissive 2-bit anisotropic coding metasurface
Pengtao Lai(来鹏涛), Zenglin Li(李增霖), Wei Wang(王炜), Jia Qu(曲嘉), Liangwei Wu(吴良威),Tingting Lv(吕婷婷), Bo Lv(吕博), Zheng Zhu(朱正), Yuxiang Li(李玉祥),Chunying Guan(关春颖), Huifeng Ma(马慧锋), and Jinhui Shi(史金辉). Chin. Phys. B, 2022, 31(9): 098102.
[5] Controlling acoustic orbital angular momentum with artificial structures: From physics to application
Wei Wang(王未), Jingjing Liu(刘京京), Bin Liang (梁彬), and Jianchun Cheng(程建春). Chin. Phys. B, 2022, 31(9): 094302.
[6] Design of cylindrical conformal transmitted metasurface for orbital angular momentum vortex wave generation
Ben Fu(付犇), Shi-Xing Yu(余世星), Na Kou(寇娜), Zhao Ding(丁召), and Zheng-Ping Zhang(张正平). Chin. Phys. B, 2022, 31(4): 040703.
[7] Beam alignments based on the spectrum decomposition of orbital angular momentums for acoustic-vortex communications
Gepu Guo(郭各朴), Xinjia Li(李昕珈), Qingdong Wang(王青东), Yuzhi Li(李禹志), Qingyu Ma(马青玉), Juan Tu(屠娟), and Dong Zhang(章东). Chin. Phys. B, 2022, 31(12): 124302.
[8] Shared aperture metasurface antenna for electromagnetic vortices generation with different topological charges
He Wang(王贺), Yong-Feng Li(李勇峰), and Shao-Bo Qu(屈绍波). Chin. Phys. B, 2021, 30(8): 084101.
[9] Efficient manipulation of terahertz waves by multi-bit coding metasurfaces and further applications of such metasurfaces
Yunping Qi(祁云平) Baohe Zhang(张宝和), Jinghui Ding(丁京徽), Ting Zhang(张婷), Xiangxian Wang(王向贤), and Zao Yi(易早). Chin. Phys. B, 2021, 30(2): 024211.
[10] Generation of a large orbital angular momentum beam via an optical fiber winding around a curved path and its application
Wei-Han Tan(谭维翰), Chao-Ying Zhao(赵超樱), Yi-Chao Meng(孟义朝), and Qi-Zhi Guo(郭奇志). Chin. Phys. B, 2021, 30(10): 104208.
[11] Recent advances in generation of terahertz vortex beams andtheir applications
Honggeng Wang(王弘耿), Qiying Song(宋其迎), Yi Cai(蔡懿), Qinggang Lin(林庆钢), Xiaowei Lu(陆小微), Huangcheng Shangguan(上官煌城), Yuexia Ai(艾月霞), Shixiang Xu(徐世祥). Chin. Phys. B, 2020, 29(9): 097404.
[12] Hybrid vector beams with non-uniform orbital angular momentum density induced by designed azimuthal polarization gradient
Lei Han(韩磊), Shuxia Qi(齐淑霞), Sheng Liu(刘圣), Peng Li(李鹏), Huachao Cheng(程华超), Jianlin Zhao(赵建林). Chin. Phys. B, 2020, 29(9): 094203.
[13] Electromagnetic field of a relativistic electron vortex beam
Changyong Lei(雷长勇), Guangjiong Dong(董光炯). Chin. Phys. B, 2020, 29(8): 084102.
[14] Optical spin-to-orbital angular momentum conversion instructured optical fields
Yang Zhao(赵阳), Cheng-Xi Yang(阳成熙), Jia-Xi Zhu(朱家玺), Feng Lin(林峰), Zhe-Yu Fang(方哲宇), Xing Zhu(朱星). Chin. Phys. B, 2020, 29(6): 067301.
[15] Generation of orbital angular momentum and focused beams with tri-layer medium metamaterial
Zhi-Chao Sun(孙志超), Meng-Yao Yan(闫梦瑶), and Bi-Jun Xu(徐弼军)†. Chin. Phys. B, 2020, 29(10): 104101.
No Suggested Reading articles found!