Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(11): 114703    DOI: 10.1088/1674-1056/22/11/114703
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Imaging of supersonic flow over a double elliptic surface

Zhang Qing-Hu (张庆虎), Yi Shi-He (易仕和), He Lin (何霖), Zhu Yang-Zhu (朱杨柱), Chen Zhi (陈植)
College of Aerospace Science and Engineering, National University of Defense Technology, Changsha 410073, China
Abstract  The coherent structures of flow over a double elliptic surface are experimentally investigated in a supersonic low-noise wind tunnel at Mach number 3 using nano-tracer planar laser scattering (NPLS) and particle image velocimetry (PIV) techniques. High spatiotemporal resolution images and velocity fields of both laminar and turbulent inflows over the test model are captured. Based on the time-correlation images, the spatial and temporal evolutionary characteristics of the coherent structures are investigated. The flow structures in the NPLS images are in good agreement with the velocity fluctuation fields by PIV. From statistically significant ensembles, spatial correlation analysis of both cases is performed to quantify the mean size and the orientation of coherent structures. The results indicate that the mean structure is elliptical in shape and the structural angles in the separated region of laminar inflow are slightly smaller than that of turbulent inflow. Moreover, the structural angles of both cases increase with their distance away from the wall.
Keywords:  coherent structures      separated flow      spatial correlation analysis      supersonic flow  
Received:  22 January 2013      Revised:  13 May 2013      Accepted manuscript online: 
PACS:  47.27.De (Coherent structures)  
  47.32.Ff (Separated flows)  
  47.40.Ki (Supersonic and hypersonic flows)  
  47.80.Cb (Velocity measurements)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11172326), the National Basic Research Program of China (Grant No. 2009CB724100), and the Scientific Research Program of National University of Defense Technology, China (Grant No. 0100010112001).
Corresponding Authors:  He Lin     E-mail:  helin.101sys@gmail.com

Cite this article: 

Zhang Qing-Hu (张庆虎), Yi Shi-He (易仕和), He Lin (何霖), Zhu Yang-Zhu (朱杨柱), Chen Zhi (陈植) Imaging of supersonic flow over a double elliptic surface 2013 Chin. Phys. B 22 114703

[1] Bourdon C J and Dutton J C 1999 Phys. Fluids 11 201
[2] Smith K M and Dutton J C 1996 AIAA J. 34 1146
[3] Papamoschou D and Bunyajitradulya A 1997 Phys. Fluids 9 756
[4] Poggie J, Erbland P J, Smits A J and Miles R B 2004 Exp. Fluids 37 438
[5] Bookey P, Wyckham C, Smits A J and Martin M P 2005 43rd Aerospcae Sciences Meeting and Exhibit, 10–13 January, 2005, Reno, USA, AIAA 2005-309
[6] Humble R A, Peltier S J, Lynch, Thurow B S and Bowersox 2011 41st AIAA Fluid Dynamics Conference and Exhibit, 27–30 June, 2011, Hawaii, USA, AIAA 2011-3419
[7] Ganapathisubramani B, Clemens N T and Dolling D S 2007 J. Fluid Mech. 585 369
[8] Ringuette M J, Bookey P, Wyckham C and Smits A J 2009 AIAA J. 47 373
[9] Hou Y X 2003 Particle Image Velocimetry Study of Shock-induced Turbulent Boundary Layer Separation (Ph. D. Dissertation) (Austin: University of Texas)
[10] Schrijer F F J, Scarano F and van Oudheusden B W 2006 Exp. Fluids 41 353
[11] Pirozzoli S, Bernardini M and Grasso F 2010 J Fluid. Mech. 648 325
[12] Adrian R J, meinhart C D and Tomkins C D 2000 J Fluid. Mech. 422 1
[13] Adrian R J 2007 Phys. Fluids 19 041301
[14] Pirozzoli S, Bernardini M and Grasso F 2008 J Fluid Mech. 613 205
[15] Schülein E and Trofimov V M 2011 J Fluid. Mech. 672 451
[16] Zhang C, Pan C and Wang J J 2011 Exp. Fluids 51 1343
[17] Tang Z Q, Jiang N, Schröder A and Geisler R 2012 Acta Mech. Sin. 28 572
[18] Lee C B and Fu S 2000 Chin. Phys. 9 508
[19] Li F C, Cai W H, Zhang H N and Wang Y 2012 Chin. Phys. B 21 114701
[20] She Z S, Hu N and Wu Y 2009 Acta Mech. Sin. 25 731
[21] Zhou Y, Ma Y W and Liang X L 2007 Chin. Phys. Lett. 24 147
[22] Cao Y H, Pei J, Chen J and She Z S 2008 Chin. Phys. Lett. 25 3315
[23] Wang L and Lu X Y 2011 Chin. Phys. Lett. 28 034703
[24] Zhu Y Z, Yi S H, He L, Tian L F and Zhou Y W 2013 Chin. Phys. B 22 014702
[25] Zhao Y X, Yi S H, Tian L F and Cheng Z Y 2009 Sci. China Ser. E 52 3640
[26] He L, Yi S H, Zhao Y X, Tian L F and Chen Z 2011 Chin. Sci. Bull. 56 489
[27] Gao Q, Yi S H, Jiang Z F and Xie W K 2012 Chin. Phys. B 21 064701
[28] Wang B, Liu W D, Zhao Y X, Fan X Q and Wang C 2012 Phys. Fluids 24 055110
[29] Chen Z, Yi S H, Tian L F, He L and Zhu Y Z 2012 Shock Waves 23 299
[30] He L, Yi S H, Tian L F, Chen Z and Zhu Y Z 2013 Chin. Phys. B 22 024704
[31] Zhu Y Z, Yi S H, Chen Z, Ge Y, Wang X H and Fu J 2013 Acta Phys. Sin. 6 084219 (in Chinese)
[32] Smits A J and Dussauge J P 2006 Turbulent Shear Layers in Supersonic Flow 2nd edn. (New York: Springer) pp. 323–325
[33] Fitzgibbon A W, Pilu M and Fisher R B 1999 IEEE Trans. Pattern Analys. Machi. Intellig. 21 476
[1] Particle transport behavior in air channel flow with multi-group Lagrangian tracking
Hao Lu(卢浩), Wen-Jun Zhao(赵文君), Hui-Qiang Zhang(张会强), Bing Wang(王兵), Xi-Lin Wang(王希麟). Chin. Phys. B, 2017, 26(1): 014702.
[2] Three-dimensional turbulent flow over cube-obstacles
Hao Lu(卢浩), Wen-Jun Zhao(赵文君), Hui-Qiang Zhang(张会强), Bing Wang(王兵), Xi-Lin Wang(王希麟). Chin. Phys. B, 2017, 26(1): 014703.
[3] Flow control of micro-ramps on supersonic forward-facing step flow
Qing-Hu Zhang(张庆虎), Tao Zhu(朱涛), Shihe Yi(易仕和), Anping Wu(吴岸平). Chin. Phys. B, 2016, 25(5): 054701.
[4] Experimental study on spectrum and multi-scale nature of wall pressure and velocity in turbulent boundary layer
Zheng Xiao-Bo (郑小波), Jiang Nan (姜楠). Chin. Phys. B, 2015, 24(6): 064702.
[5] Instantaneous and time-averaged flow structures around a blunt double-cone with or without supersonic film cooling visualized via nano-tracer planar laser scattering
Zhu Yang-Zhu (朱杨柱), Yi Shi-He (易仕和), He Lin (何霖), Tian Li-Feng (田立丰), Zhou Yong-Wei (周勇为). Chin. Phys. B, 2013, 22(1): 014702.
[6] Analysing the structure of the optical path length of a supersonic mixing layer by using wavelet methods
Gao Qiong(高穹), Yi Shi-He(易仕和), Jiang Zong-Fu(姜宗福), Zhao Yu-Xin(赵玉新), and Xie Wen-Ke(谢文科) . Chin. Phys. B, 2012, 21(6): 064701.
[7] Experimental investigations of detonation initiation by hot jets in supersonic premixed flows
Han Xu (韩旭), Zhou Jin (周进), Lin Zhi-Yong (林志勇). Chin. Phys. B, 2012, 21(12): 124702.
[8] Bäcklund transformation and variable separation solutions for the generalized Nozhnik-Novikov-Veselov equation
Zhang Jie-Fang (张解放). Chin. Phys. B, 2002, 11(7): 651-655.
No Suggested Reading articles found!