Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(1): 013401    DOI: 10.1088/1674-1056/26/1/013401
RAPID COMMUNICATION Prev   Next  

Energy sharing induced by the nonlinear interaction

Yuan Liu(刘渊)1, Zhifang Feng(冯志芳)1, Weidong Li(李卫东)2
1. Physics Department of College of Applied Science, Taiyuan University of Science and Technology, Taiyuan 030024, China;
2. Institute of Theoretical Physics and Department of Physics, Shanxi University, Taiyuan 030006, China
Abstract  

Strong energy sharing is shown by numerically investigating coupled multi-component Bose-Einstein condensates (BECs) with a harmonic trap to simulate the Fermi-Pasta-Ulam model (FPU). For two-component BECs, the energy exchanging between each part, from regular, quantum beating to complete energy sharing, is explored by simulating their Husimi distributions, the time evolution of energies and the statistical entropy. Meanwhile, in the three-component case, a more complex energy sharing behavior is reported and a strong energy sharing is found.

Keywords:  Bose-Einstein condensates      Fermi-Pasta-Ulam model      Husimi distributions      statistical entropy  
Received:  27 June 2016      Revised:  02 September 2016      Accepted manuscript online: 
PACS:  34.50.Cx (Elastic; ultracold collisions)  
  05.30.Jp (Boson systems)  
  05.45.Pq (Numerical simulations of chaotic systems)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant No. 11374197), the Research Fund for the Doctoral Program of TYUST, China (Grant No. 20122041), and the Program for Changjiang Scholars and Innovative Research Team in University, China (Grant No. IRT13076).

Corresponding Authors:  Weidong Li     E-mail:  wdli@sxu.edu.cn

Cite this article: 

Yuan Liu(刘渊), Zhifang Feng(冯志芳), Weidong Li(李卫东) Energy sharing induced by the nonlinear interaction 2017 Chin. Phys. B 26 013401

[1] Fermi E, Pasta J and Ulam S 1955 Los Alamos Report LA-1940
[2] Berman G P and Izraileva F M 2005 Chaos 15 015104
[3] Fermi E 1923 Phys. Zeit. 24 261
[4] Izrailev F M and Chirikov B V 1966 Sov. Phys. Dokl. 11 30
[5] Izrailev F M, Khisamutdinov A I and Chirikov B V 1970 Los Alams Report LA-4440-TR
[6] Ford J 1961 J. Math. Phys. 2 387
[7] Northcote R S and Potts R B 1964 J. Math. Phys. 5 383
[8] Berman G P and Kolovsky A R 1984 Sov. Phys. JETP 60 1116
[9] Villain P and Lewenstein M 2000 Phys. Rev. A 62 043601
[10] Berman G P, Borgonovi F, Izrailev F M and Smerzi A 2004 Phys. Rev. Lett. 92 030404
[11] Kinoshita T, Wenger T and Weiss D S 2006 Nature 440 900
[12] Wang X M, Li Q Y and Li Z D 2013 Chin. Phys. B 22 050311
[13] Liu X X, Zhang P, He W Q and Zhang X F 2011 Chin. Phys. B 20 020307
[14] Li W D, Zhou X J, Wang Y Q, Liang J Q and Liu W M 2001 Phys. Rev. A 64 015602
[15] Lee H W 1995 Phys. Rep. 259 147
[16] Chaudhury S, Smith A and Anderson B E 2009 Nature 461 768
[17] Rosanov N N and Vysotina N V 2015 Phys. Rev. A 91 013622
[18] Livi R, Pettini M, Ruffo S, Sparpaglione M and Vulpiani A 1985 Phys. Rev. A 31 1039
[1] Anderson localization of a spin-orbit coupled Bose-Einstein condensate in disorder potential
Huan Zhang(张欢), Sheng Liu(刘胜), and Yongsheng Zhang(张永生). Chin. Phys. B, 2022, 31(7): 070305.
[2] Vortex chains induced by anisotropic spin-orbit coupling and magnetic field in spin-2 Bose-Einstein condensates
Hao Zhu(朱浩), Shou-Gen Yin(印寿根), and Wu-Ming Liu(刘伍明). Chin. Phys. B, 2022, 31(6): 060305.
[3] Measuring gravitational effect of superintense laser by spin-squeezed Bose—Einstein condensates interferometer
Eng Boon Ng and C. H. Raymond Ooi. Chin. Phys. B, 2022, 31(5): 053701.
[4] Manipulating vortices in F=2 Bose-Einstein condensates through magnetic field and spin-orbit coupling
Hao Zhu(朱浩), Shou-Gen Yin(印寿根), and Wu-Ming Liu(刘伍明). Chin. Phys. B, 2022, 31(4): 040306.
[5] Spin-orbit-coupled spin-1 Bose-Einstein condensates confined in radially periodic potential
Ji Li(李吉), Tianchen He(何天琛), Jing Bai(白晶), Bin Liu(刘斌), and Huan-Yu Wang(王寰宇). Chin. Phys. B, 2021, 30(3): 030302.
[6] Adjustable half-skyrmion chains induced by SU(3) spin-orbit coupling in rotating Bose-Einstein condensates
Li Wang(王力), Ji Li(李吉), Xiao-Lin Zhou(周晓林), Xiang-Rong Chen(陈向荣), and Wu-Ming Liu(刘伍明). Chin. Phys. B, 2021, 30(11): 110312.
[7] Spinor F=1 Bose-Einstein condensates loaded in two types of radially-periodic potentials with spin-orbit coupling
Ji-Guo Wang(王继国), Yue-Qing Li(李月晴), Han-Zhao Tang(唐翰昭), and Ya-Fei Song(宋亚飞). Chin. Phys. B, 2021, 30(10): 106701.
[8] Simple and robust method for rapid cooling of 87Rb to quantum degeneracy
Chun-Hua Wei(魏春华), Shu-Hua Yan(颜树华). Chin. Phys. B, 2020, 29(6): 064208.
[9] Bose-Einstein condensates in an eightfold symmetric optical lattice
Zhen-Xia Niu(牛真霞), Yong-Hang Tai(邰永航), Jun-Sheng Shi(石俊生), Wei Zhang(张威). Chin. Phys. B, 2020, 29(5): 056103.
[10] Interference properties of two-component matter wave solitons
Yan-Hong Qin(秦艳红), Yong Wu(伍勇), Li-Chen Zhao(赵立臣), Zhan-Ying Yang(杨战营). Chin. Phys. B, 2020, 29(2): 020303.
[11] Quantized vortices in spinor Bose–Einstein condensates with time–space modulated interactions and stability analysis
Yu-Qin Yao(姚玉芹)† and Ji Li(李吉). Chin. Phys. B, 2020, 29(10): 103701.
[12] Lattice configurations in spin-1 Bose–Einstein condensates with the SU(3) spin–orbit coupling
Ji-Guo Wang(王继国)†, Yue-Qing Li(李月晴), and Yu-Fei Dong(董雨菲). Chin. Phys. B, 2020, 29(10): 100304.
[13] Trapped Bose-Einstein condensates with quadrupole-quadrupole interactions
An-Bang Wang(王安邦), Su Yi(易俗). Chin. Phys. B, 2018, 27(12): 120307.
[14] Tunable ground-state solitons in spin-orbit coupling Bose-Einstein condensates in the presence of optical lattices
Huafeng Zhang(张华峰), Fang Chen(陈方), Chunchao Yu(郁春潮), Lihui Sun(孙利辉), Dahai Xu(徐大海). Chin. Phys. B, 2017, 26(8): 080304.
[15] Generating periodic interference in Bose-Einstein condensates
Shen-Tong Ji(冀慎统), Yuan-Sheng Wang(王元生), Yue-E Luo(罗月娥), Xue-Shen Liu(刘学深). Chin. Phys. B, 2016, 25(9): 090303.
No Suggested Reading articles found!