Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(9): 090301    DOI: 10.1088/1674-1056/25/9/090301
SPECIAL TOPIC—Physical research in liquid crystal Prev   Next  

Random lasing from dye-doped negative liquid crystals using ZnO nanoparticles as tunable scatters

Long-Wu Li(李龙武)1, Zhen-Zhen Shang(尚真真)2, Luogen Deng(邓罗根)2
1. School of Physics and Electronic Science, Guizhou Normal University, Guiyang 550001, China;
2. School of Physics, Beijing Institute of Technology, Beijing 100081, China
Abstract  This work demonstrates the realization of a lasing in scattering media, which contains dispersive solution of ZnO nanoparticles (NPs) and laser dye 4-dicyanomethylene-2-methyle-6-(p-dimethylaminostyryl)-4H-pyran(DCM) in negative liquid crystals (LCs) that was injected into a cell. The lasing intensity of the dye-doped negative LC laser can be tuned from low to high if the NPs concentration is increased. The tunability of the laser is attributable to the clusters-sensitive feature in effective refractive index of the negative LCs. Such a tunable negative liquid crystal laser can be used in the fabrication of new optical sources, optical communication, and liquid crystal laser displays.
Keywords:  random laser      negative liquid crystal      laser threshold      ZnO nanoparticles  
Received:  27 May 2016      Accepted manuscript online: 
PACS:  03.65.Yz (Decoherence; open systems; quantum statistical methods)  
  03.65.Ta (Foundations of quantum mechanics; measurement theory)  
  03.65.Ud (Entanglement and quantum nonlocality)  
Fund: Project supported by the Doctoral Science Research Start-up Funding of Guizhou Normal University, China (Grant No. 11904-0514162) and the National Natural Science Foundation of China (Grant No. 11474021).
Corresponding Authors:  Luogen Deng     E-mail:  luogen@bit.edu.cn

Cite this article: 

Long-Wu Li(李龙武), Zhen-Zhen Shang(尚真真), Luogen Deng(邓罗根) Random lasing from dye-doped negative liquid crystals using ZnO nanoparticles as tunable scatters 2016 Chin. Phys. B 25 090301

[1] Lawandy N M, Balachandran R M, Gomes A S L and Sauvain E 1994 Nature 368 436
[2] Cao H, Zhao Y G, Ho S T, Seelig E W, Wang Q H and Chang R P 1999 Phys. Rev. Lett. 82 2278
[3] Yang L, Feng G, Yi J, Yao K, Deng G and Zhou S 2011 Appl. Opt. 50 1816
[4] Kitur J, Zhu G, Bahoura M and Noginov M A 2010 J. Opt. 12 024009
[5] Zhou H, Feng G Y, Yao K, Yang C, Yi J and Zhou S H 2012 Opt. Lett. 38 3604
[6] Shrestha P K, Chun Y T and Chu D 2015 Light: Sci. Appl. 4 e259
[7] Matioli E, Brinkley S, Kelchner K M, Hu Y L, Nakamura S, DenBaars S, Speck J and Weisbuch C 2012 Light: Sci. Appl. 1 e22
[8] Morris S M, Ford A D, Pivnenko M N and Coles H J 2005 Appl. Phys. Lett. 86 141103
[9] Strangi G, Ferjani S, Barna V, De Luca A, Versace C, Scaramuzza N and Bartolino R 2006 Opt. Express 14 7737
[10] Morris S M, Gardiner D J, Qasim M M, Hands P J W, Wilkinson T D and Coles H J 2012 Appl. Phys. Lett. 100 071110
[11] Mujumdar S, Ricci M, Torre R and Wiersma D S 2004 Phys. Rev. Lett. 93 053903
[12] Lee C R, Lin J D, Huang B Y, Lin S H, Mo T S, Huang S Y, Kuo C T and Yeh H C 2011 Opt. Express 19 2391
[13] Chen C W, Jau H C, Wang C T, Lee C H and Lin T H 2012 Opt. Express 20 23978
[14] Li L W and Deng L G 2013 Laser Phys. 23 085001
[15] Gottardo S, Cavalieri S, Yaroshchuk O and Wiersma D S 2004 Phys. Rev. Lett. 93 263901
[16] Li L W and Deng L G 2012 Physica B 407 4826
[17] Li L W, Wang L and Deng L G 2014 Laser Phys. Lett. 11 025201
[18] Ghofraniha N, Viola I, Zacheo A, Arima V, Gigli G and Conti C 2013 Opt. Lett. 38 5043
[19] Cui L B, Shi J W, Wang Y R, Zheng R Q, Chen X, Gong W P and Liu D H 2015 Appl. Phys. Lett. 106 201101
[20] Liu Y J and Sun X W 2006 Appl. Phys. Lett. 89 011111
[21] Frolov S V, Gellerman W, Ozaki M, Yoshino K and Vardeny Z V 1997 Phys. Rev. Lett. 78 729
[22] Kopp V I, Fan B, Vithana H K M and Genack A Z 1998 Opt. Lett. 23 1707
[23] Song Q, Liu L, Xu L, Wu Y and Wang Z 2009 Opt. Lett. 34 298
[24] Li L W and Deng L G 2013 Eur. Phys. J. B 86 112
[25] Lin J H and Hsiao Y L 2014 Opt. Mater. Exp. 4 1555
[26] Dou H, Yu Y N, Ma H M and Sun Y B 2015 Chinese Journal of Liquid Crystals and Displays 30 381
[27] Zhao D Y, Deng S Y, Kang J X, Wang Q, Xu L H, Guo L and Yang H 2015 Chinese Journal of Liquid Crystals and Displays 30 208
[28] Zhu G, Small C E and Noginov M A 2007 J. Opt. Soc. Am. B 24 2129
[1] Erratum to “Indium doping effect on properties of ZnO nanoparticles synthesized by sol-gel method”
S Mourad, J El Ghoul, K Omri, K Khirouni. Chin. Phys. B, 2020, 29(3): 039901.
[2] Indium doping effect on properties of ZnO nanoparticles synthesized by sol-gel method
S Mourad, J El Ghoul, K Omri, K Khirouni. Chin. Phys. B, 2019, 28(4): 047701.
[3] Transverse localization of Tamm plasmon in metal-DBR structure with disordered layer
Deng-Ju He(何登举), Wei-Li Zhang(张伟利), Rui Ma(马瑞), Shan-Shan Wang(王珊珊), Xiao-Min Wu(吴小敏), Yun-Jiang Rao(饶云江). Chin. Phys. B, 2018, 27(8): 087301.
[4] Hot spots enriched plasmonic nanostructure-induced random lasing of quantum dots thin film
Feng Shan(单锋), Xiao-Yang Zhang(张晓阳), Jing-Yuan Wu(吴静远), Tong Zhang(张彤). Chin. Phys. B, 2018, 27(4): 047804.
[5] Flexible electrically pumped random lasing from ZnO nanowires based on metal-insulator-semiconductor structure
Miao-Ling Que(阙妙玲), Xian-Di Wang(王贤迪), Yi-Yao Peng(彭轶瑶), Cao-Feng Pan(潘曹峰). Chin. Phys. B, 2017, 26(6): 067301.
[6] Spectral features and antibacterial properties of Cu-doped ZnO nanoparticles prepared by sol-gel method
Alireza Samavati, A F Ismail, Hadi Nur, Z Othaman, M K Mustafa. Chin. Phys. B, 2016, 25(7): 077803.
[7] High-frequency properties of oil-phase-synthesized ZnO nanoparticles
Ding Hao-Feng (丁浩峰), Yang Hai-Tao (杨海涛), Liu Li-Ping (柳丽平), Ren Xiao (任肖), Song Ning-Ning (宋宁宁), Shen Jun (沈俊), Zhang Xiang-Qun (张向群), Cheng Zhao-Hua (成昭华), Zhao Guo-Ping (赵国平). Chin. Phys. B, 2015, 24(2): 027804.
[8] Determining the thermophysical properties of Al-doped ZnO nanoparticles by the photoacoustic technique
T. A. El-Brolossy, O. Saber, S. S. Ibrahim. Chin. Phys. B, 2013, 22(7): 074401.
[9] Fabrication of ZnO nanoparticles-embedded hydrogenated diamond-like carbon films by electrochemical deposition technique
Zhang Pei-Zeng (张培增), Li Rui-Shan (李瑞山), Pan Xiao-Jun (潘效军), Xie Er-Qing (谢二庆). Chin. Phys. B, 2013, 22(5): 058106.
[10] A method to control the polarization of random terahertz lasing in two-dimensional disordered ruby medium
Liu Yong(刘勇), Liu Jin-Song(刘劲松), and Wang Ke-Jia(王可嘉) . Chin. Phys. B, 2011, 20(9): 094205.
No Suggested Reading articles found!