Special Issue:
SPECIAL TOPIC — Nanophotonics
|
|
|
Transverse localization of Tamm plasmon in metal-DBR structure with disordered layer |
Deng-Ju He(何登举), Wei-Li Zhang(张伟利), Rui Ma(马瑞), Shan-Shan Wang(王珊珊), Xiao-Min Wu(吴小敏), Yun-Jiang Rao(饶云江) |
Key Laboratory of Optical Fiber Sensing and Communications, Education Ministry of China, University of Electronic Science and Technology of China, Chengdu, China |
|
|
Abstract Transverse localization of the optical Tamm plasmon (OTP) is studied in a metal-distributed Bragg reflector (DBR) structure with a one-dimensional disordered layer embedded at the interface between the metal and the DBR. The embedded disordered layer induces multiple scattering and interference of light, forming the light localization in the transverse direction. This together with the formation of Tamm plasmonic modes at the metal-DBR interface (i.e., the confinement of light in the longitudinal direction), gives birth to the so called transverse-localized Tamm plasmon. It is shown that for both transverse electric (TE) and transverse magnetic (TM) polarized light injection, the excited transverse-localized Tamm plasmon broadens and splits the dispersion curve due to spatial incoherence in the transverse direction, thus proving the stronger light confinement especially in the TE polarized injection. By adding the gain medium, specific random lasing modes are observed. The proposed study could be an efficient way of trapping and locally enhancing light on a subwavelength scale, which is useful in applications of random lasers, optical sensing, and imaging.
|
Received: 08 April 2018
Revised: 13 May 2018
Accepted manuscript online:
|
PACS:
|
73.20.-r
|
(Electron states at surfaces and interfaces)
|
|
71.36.+c
|
(Polaritons (including photon-phonon and photon-magnon interactions))
|
|
78.67.-n
|
(Optical properties of low-dimensional, mesoscopic, and nanoscale materials and structures)
|
|
78.67.Pt
|
(Multilayers; superlattices; photonic structures; metamaterials)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61575040 and 61635005) and the 111 Project, China (Grant No. B14039). |
Corresponding Authors:
Wei-Li Zhang
E-mail: wl_zhang@aliyun.com
|
Cite this article:
Deng-Ju He(何登举), Wei-Li Zhang(张伟利), Rui Ma(马瑞), Shan-Shan Wang(王珊珊), Xiao-Min Wu(吴小敏), Yun-Jiang Rao(饶云江) Transverse localization of Tamm plasmon in metal-DBR structure with disordered layer 2018 Chin. Phys. B 27 087301
|
[1] |
Wiersma D S, Bartolini P, Lagendijk A and Righini R 1997 Nature 390 671
|
[2] |
Schwartz T, Bartal G, Fishman S and Segev M 2007 Nature 446 52
|
[3] |
Shapira O and Fischer B 2005 J. Opt. Soc. Am. B 22 2542
|
[4] |
Pincemin F and Greffet J J 1996 J. Opt. Soc. Am. B 13 1499
|
[5] |
Vardeny Z V and Raikh M 2007 Nature 446 37
|
[6] |
Mascheck M, Schmidt S, Silies M, Yatsui T, Kitamura K, Ohtsu M, Leipold D, Runge E and Lienau C 2012 Nat. Photon. 6 293
|
[7] |
Karbasi S, Mirr C R, Yarandi P G, Frazier R J, Koch K W and Mafi A 2012 Opt. Lett. 37 2304
|
[8] |
Raedt H D, Lagendijk A and Vries P D 1989 Phys. Rev. Lett. 62 47
|
[9] |
Schuurmans F J P, Megens M, Vanmaekelbergh D and Lagendijk A 1999 Phys. Rev. Lett. 83 2183
|
[10] |
Abaie B and Mafi A 2016 Phys. Rev. B 94 064201
|
[11] |
Lu F F and Wang C F 2017 Appl. Opt. 56 179
|
[12] |
Kavokin A V, Shelykh I A and Malpuech G 2005 Phys. Rev. B 72 233102
|
[13] |
Zhang W L, Wang F, Rao Y J and Jiang Y 2014 Opt. Express 22 14524
|
[14] |
Zou X, Li W, Pan W, Yan L and Yao J 2013 IEEE Trans. Microw. Theory Tech. 61 3470
|
[15] |
Sasin M E, Seisyan R P, Kaliteevski M A, et al. 2010 Superlattice Microstruct. 47 44
|
[16] |
Symonds C, Lemaître A, Homeyer E, et al. 2009 Appl. Phys. Lett. 95 151114
|
[17] |
Ozbay E 2006 Science 311 189
|
[18] |
Zhang C, Wu K, Giannini V and Li X F 2017 ACS Nano 11 1719
|
[19] |
Yang Z Y, Ishii S, Yokoyama T, et al. 2017 ACS Photon. 4 2212
|
[20] |
Xue C H, Jiang H T, Lu H, Du G Q and Chen H 2013 Opt. Lett. 38 959
|
[21] |
Zhang W L and Yu S F 2010 Opt. Commun. 283 2622
|
[22] |
Liew T C H, Kavokin A V, Ostatnický T, et al. 2010 Phys. Rev. B 82 033302
|
[23] |
Zhou H C, Yang G, Wang K, Long H and Lu P X 2010 Opt. Lett. 35 4112
|
[24] |
Kavokin A, Shelykh I and Malpuech G 2005 Appl. Phys. Lett. 87 261105
|
[25] |
Gazzano O, Michaelis de Vasconcellos S, Gauthron K, et al. 2011 Phys. Rev. Lett. 107 247402
|
[26] |
Grossmann C, Coulson C, Christmann G, et al. 2011 Appl. Phys. Lett. 98 409
|
[27] |
Zhang Y, Lin B, Tjin S C, et al. 2010 Opt. Express 18 26345
|
[28] |
Ran Y, Tan Y N, Sun L P, et al. 2011 Opt. Express 19 18577
|
[29] |
Wang F 2015 “Design and Analysis of Photonic Devices Based on Optical Tamm Plasmon”, Master dissertation (Chengdu: University of Electronic Science and Technology of China) (in Chinese)
|
[30] |
Wan P B, Wen X M, Sun C Z, et al. 2015 Small 11 5409
|
[31] |
Yang Z J, Zhang W L, Ma R, et al. 2017 Photon. Res. 5 557
|
[32] |
Li K, Fitzgerald J M, Xiao X F, et al. 2017 ACS Omega 2 3640
|
[33] |
Abaie B, Mobini E, Karbasi S, et al. 2017 Light: Sci. Appl. 6 e17041
|
[34] |
Burlak G and MartinezS ánchez E 2017 Opt. Commun. 387 426
|
[35] |
Zhang W L, Wang F, Rao Y J, et al. 2014 Opt. Express 22 14524
|
[36] |
Oughstun K E and Cartwright N A 2003 Opt. Express 11 1541
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|