Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(8): 087301    DOI: 10.1088/1674-1056/27/8/087301
Special Issue: SPECIAL TOPIC — Nanophotonics
SPECIAL TOPIC—Nanophotonics Prev   Next  

Transverse localization of Tamm plasmon in metal-DBR structure with disordered layer

Deng-Ju He(何登举), Wei-Li Zhang(张伟利), Rui Ma(马瑞), Shan-Shan Wang(王珊珊), Xiao-Min Wu(吴小敏), Yun-Jiang Rao(饶云江)
Key Laboratory of Optical Fiber Sensing and Communications, Education Ministry of China, University of Electronic Science and Technology of China, Chengdu, China
Abstract  

Transverse localization of the optical Tamm plasmon (OTP) is studied in a metal-distributed Bragg reflector (DBR) structure with a one-dimensional disordered layer embedded at the interface between the metal and the DBR. The embedded disordered layer induces multiple scattering and interference of light, forming the light localization in the transverse direction. This together with the formation of Tamm plasmonic modes at the metal-DBR interface (i.e., the confinement of light in the longitudinal direction), gives birth to the so called transverse-localized Tamm plasmon. It is shown that for both transverse electric (TE) and transverse magnetic (TM) polarized light injection, the excited transverse-localized Tamm plasmon broadens and splits the dispersion curve due to spatial incoherence in the transverse direction, thus proving the stronger light confinement especially in the TE polarized injection. By adding the gain medium, specific random lasing modes are observed. The proposed study could be an efficient way of trapping and locally enhancing light on a subwavelength scale, which is useful in applications of random lasers, optical sensing, and imaging.

Keywords:  optical Tamm plasmon      light localization      random laser      distributed Bragg reflector  
Received:  08 April 2018      Revised:  13 May 2018      Accepted manuscript online: 
PACS:  73.20.-r (Electron states at surfaces and interfaces)  
  71.36.+c (Polaritons (including photon-phonon and photon-magnon interactions))  
  78.67.-n (Optical properties of low-dimensional, mesoscopic, and nanoscale materials and structures)  
  78.67.Pt (Multilayers; superlattices; photonic structures; metamaterials)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos. 61575040 and 61635005) and the 111 Project, China (Grant No. B14039).

Corresponding Authors:  Wei-Li Zhang     E-mail:  wl_zhang@aliyun.com

Cite this article: 

Deng-Ju He(何登举), Wei-Li Zhang(张伟利), Rui Ma(马瑞), Shan-Shan Wang(王珊珊), Xiao-Min Wu(吴小敏), Yun-Jiang Rao(饶云江) Transverse localization of Tamm plasmon in metal-DBR structure with disordered layer 2018 Chin. Phys. B 27 087301

[1] Wiersma D S, Bartolini P, Lagendijk A and Righini R 1997 Nature 390 671
[2] Schwartz T, Bartal G, Fishman S and Segev M 2007 Nature 446 52
[3] Shapira O and Fischer B 2005 J. Opt. Soc. Am. B 22 2542
[4] Pincemin F and Greffet J J 1996 J. Opt. Soc. Am. B 13 1499
[5] Vardeny Z V and Raikh M 2007 Nature 446 37
[6] Mascheck M, Schmidt S, Silies M, Yatsui T, Kitamura K, Ohtsu M, Leipold D, Runge E and Lienau C 2012 Nat. Photon. 6 293
[7] Karbasi S, Mirr C R, Yarandi P G, Frazier R J, Koch K W and Mafi A 2012 Opt. Lett. 37 2304
[8] Raedt H D, Lagendijk A and Vries P D 1989 Phys. Rev. Lett. 62 47
[9] Schuurmans F J P, Megens M, Vanmaekelbergh D and Lagendijk A 1999 Phys. Rev. Lett. 83 2183
[10] Abaie B and Mafi A 2016 Phys. Rev. B 94 064201
[11] Lu F F and Wang C F 2017 Appl. Opt. 56 179
[12] Kavokin A V, Shelykh I A and Malpuech G 2005 Phys. Rev. B 72 233102
[13] Zhang W L, Wang F, Rao Y J and Jiang Y 2014 Opt. Express 22 14524
[14] Zou X, Li W, Pan W, Yan L and Yao J 2013 IEEE Trans. Microw. Theory Tech. 61 3470
[15] Sasin M E, Seisyan R P, Kaliteevski M A, et al. 2010 Superlattice Microstruct. 47 44
[16] Symonds C, Lemaître A, Homeyer E, et al. 2009 Appl. Phys. Lett. 95 151114
[17] Ozbay E 2006 Science 311 189
[18] Zhang C, Wu K, Giannini V and Li X F 2017 ACS Nano 11 1719
[19] Yang Z Y, Ishii S, Yokoyama T, et al. 2017 ACS Photon. 4 2212
[20] Xue C H, Jiang H T, Lu H, Du G Q and Chen H 2013 Opt. Lett. 38 959
[21] Zhang W L and Yu S F 2010 Opt. Commun. 283 2622
[22] Liew T C H, Kavokin A V, Ostatnický T, et al. 2010 Phys. Rev. B 82 033302
[23] Zhou H C, Yang G, Wang K, Long H and Lu P X 2010 Opt. Lett. 35 4112
[24] Kavokin A, Shelykh I and Malpuech G 2005 Appl. Phys. Lett. 87 261105
[25] Gazzano O, Michaelis de Vasconcellos S, Gauthron K, et al. 2011 Phys. Rev. Lett. 107 247402
[26] Grossmann C, Coulson C, Christmann G, et al. 2011 Appl. Phys. Lett. 98 409
[27] Zhang Y, Lin B, Tjin S C, et al. 2010 Opt. Express 18 26345
[28] Ran Y, Tan Y N, Sun L P, et al. 2011 Opt. Express 19 18577
[29] Wang F 2015 “Design and Analysis of Photonic Devices Based on Optical Tamm Plasmon”, Master dissertation (Chengdu: University of Electronic Science and Technology of China) (in Chinese)
[30] Wan P B, Wen X M, Sun C Z, et al. 2015 Small 11 5409
[31] Yang Z J, Zhang W L, Ma R, et al. 2017 Photon. Res. 5 557
[32] Li K, Fitzgerald J M, Xiao X F, et al. 2017 ACS Omega 2 3640
[33] Abaie B, Mobini E, Karbasi S, et al. 2017 Light: Sci. Appl. 6 e17041
[34] Burlak G and MartinezS ánchez E 2017 Opt. Commun. 387 426
[35] Zhang W L, Wang F, Rao Y J, et al. 2014 Opt. Express 22 14524
[36] Oughstun K E and Cartwright N A 2003 Opt. Express 11 1541
[1] Propagation of light near the band edge in one-dimensional multilayers
Yang Tang(唐洋), Lingjie Fan(范灵杰), Yanbin Zhang(张彦彬), Tongyu Li(李同宇), Tangyao Shen(沈唐尧), and Lei Shi(石磊). Chin. Phys. B, 2023, 32(4): 044209.
[2] Spatial and spectral filtering of tapered lasers by using tapered distributed Bragg reflector grating
Jing-Jing Yang(杨晶晶), Jie Fan(范杰), Yong-Gang Zou(邹永刚),Hai-Zhu Wang(王海珠), and Xiao-Hui Ma(马晓辉). Chin. Phys. B, 2022, 31(8): 084203.
[3] Omnidirectional and compact Tamm phonon-polaritons enhanced mid-infrared absorber
Xiaomin Hua(花小敏), Gaige Zheng(郑改革), Fenglin Xian(咸冯林), Dongdong Xu(徐董董), and Shengyao Wang(王升耀). Chin. Phys. B, 2021, 30(8): 084202.
[4] Hot spots enriched plasmonic nanostructure-induced random lasing of quantum dots thin film
Feng Shan(单锋), Xiao-Yang Zhang(张晓阳), Jing-Yuan Wu(吴静远), Tong Zhang(张彤). Chin. Phys. B, 2018, 27(4): 047804.
[5] Flexible electrically pumped random lasing from ZnO nanowires based on metal-insulator-semiconductor structure
Miao-Ling Que(阙妙玲), Xian-Di Wang(王贤迪), Yi-Yao Peng(彭轶瑶), Cao-Feng Pan(潘曹峰). Chin. Phys. B, 2017, 26(6): 067301.
[6] An improved design for AlGaN solar-blind avalanche photodiodes with enhanced avalanche ionization
Yin Tang(汤寅), Qing Cai(蔡青), Lian-Hong Yang(杨莲红), Ke-Xiu Dong(董可秀), Dun-Jun Chen(陈敦军), Hai Lu(陆海), Rong Zhang(张荣), You-Dou Zheng(郑有炓). Chin. Phys. B, 2017, 26(3): 038503.
[7] Random lasing from dye-doped negative liquid crystals using ZnO nanoparticles as tunable scatters
Long-Wu Li(李龙武), Zhen-Zhen Shang(尚真真), Luogen Deng(邓罗根). Chin. Phys. B, 2016, 25(9): 090301.
[8] Modified-DBR-based semi-omnidirectional multilayer anti-reflection coating for tandem solar cells
Ali Bahrami, Shahram Mohammadnejad, Nima Jouyandeh Abkenar. Chin. Phys. B, 2014, 23(2): 028803.
[9] Dual-wavelength distributed Bragg reflector semiconductor laser based on composite resonant cavity
Chen Cheng (陈琤), Zhao Ling-Juan (赵玲娟), Qiu Ji-Fang (邱吉芳), Liu Yang (刘扬), Wang Wei (王圩), Lou Cai-Yun (娄采云). Chin. Phys. B, 2012, 21(9): 094208.
[10] Modeling of resistance characteristics of a continuously-graded distributed Bragg reflector in a 980-nm vertical-cavity surface-emitting laser
Huang Meng (黄梦), Wu Jian (吴坚), Cui Huai-Yang (崔怀洋), Qian Jian-Qiang (钱建强), Ning Yong-Qiang (宁永强). Chin. Phys. B, 2012, 21(10): 104207.
[11] A method to control the polarization of random terahertz lasing in two-dimensional disordered ruby medium
Liu Yong(刘勇), Liu Jin-Song(刘劲松), and Wang Ke-Jia(王可嘉) . Chin. Phys. B, 2011, 20(9): 094205.
No Suggested Reading articles found!