ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS |
Prev
Next
|
|
|
High power-efficiency terahertz quantum cascade laser |
Yuan-Yuan Li(李媛媛), Jun-Qi Liu(刘俊岐), Feng-Qi Liu(刘峰奇), Jin-Chuan Zhang(张锦川), Shen-Qiang Zhai(翟慎强), Ning Zhuo(卓宁), Li-Jun Wang(王利军), Shu-Man Liu(刘舒曼), Zhan-Guo Wang(王占国) |
Key Laboratory of Semiconductor Materials Science, Institute of Semiconductors, Chinese Academy of Sciences, and Beijing Key Laboratory of Low Dimensional Semiconductor Materials and Devices, Beijing 100083, China |
|
|
Abstract We demonstrate continuous-wave (CW) high power-efficiency terahertz quantum cascade laser based on semi-insulating surface-plasmon waveguide with epitaxial-side down (Epi-down) mounting process. The performance of the device is analyzed in detail. The laser emits at a frequency of ~3.27 THz and has a maximum CW operating temperature of ~70 K. The peak output powers are 177 mW in pulsed mode and 149 mW in CW mode at 10 K for 130-μm-wide Epi-down mounted lasers. The record wall-plug efficiencies in direct measurement are 2.26% and 2.05% in pulsed and CW mode, respectively.
|
Received: 24 February 2016
Revised: 12 April 2016
Accepted manuscript online:
|
PACS:
|
42.55.Px
|
(Semiconductor lasers; laser diodes)
|
|
73.63.Hs
|
(Quantum wells)
|
|
85.35.Be
|
(Quantum well devices (quantum dots, quantum wires, etc.))
|
|
Fund: Project supported by the National Basic Research Program of China (Grant Nos. 2014CB339803 and 2013CB632801), the Special-funded Program on National Key Scientific Instruments and Equipment Development, China (Grant No. 2011YQ13001802-04), and the National Natural Science Foundation of China (Grant No. 61376051). |
Corresponding Authors:
Jun-Qi Liu, Feng-Qi Liu
E-mail: jqliu@semi.ac.cn;fqliu@red.semi.ac.cn
|
Cite this article:
Yuan-Yuan Li(李媛媛), Jun-Qi Liu(刘俊岐), Feng-Qi Liu(刘峰奇), Jin-Chuan Zhang(张锦川), Shen-Qiang Zhai(翟慎强), Ning Zhuo(卓宁), Li-Jun Wang(王利军), Shu-Man Liu(刘舒曼), Zhan-Guo Wang(王占国) High power-efficiency terahertz quantum cascade laser 2016 Chin. Phys. B 25 084206
|
[1] |
Köhler R, Tredicucci A, Beltram F, Beere H E, Linfield E H, Davies A G, Ritchie D A, Iotti R C and Rossi F 2002 Nature 417 156
|
[2] |
Brandstetter M, Deutsch C, Krall M, Detz H, MacFarland D C, Zederbauer T, Andrews A M, Schrenk W, Strasser G and Unterrainer K 2013 Appl. Phys. Lett. 103 171113
|
[3] |
Li L H, Chen L, Zhu J X, Freeman J, Dean P, Valavanis A, Davies A G and Linfield E H 2014 Electron. Lett. 50 309
|
[4] |
Dean P, Lim Y L, Valavanis A, Kliese R, Nikolić M, Khanna S P, Lachab M, Indjin D, Ikonić Z, Harrison P, Rakić A D, Linfield E H and Davies A G 2011 Opt. Lett. 36 2587
|
[5] |
Valavanis A, Dean P, Lim Y L, Alhathlool R, Nikolić M, Kliese R, Khanna S P, Indjin D, Wilson S J, Rakić A D, Linfield E H and Davies G 2013 IEEE Sensors Journal 13 37
|
[6] |
Mezzapesa F P, Petruzzella M, Dabbicco M, Beere H E, Ritchie D A, Vitiello M S and Scamarcio G 2014 IEEE Trans. Terahertz Sci. Technol. 4 631
|
[7] |
Vitiello M S, Scamarcio G, Spagnolo V, Dhillon S S and Sirtori C 2007 Appl. Phys. Lett. 90 191115
|
[8] |
Hübers H W, Eichholz R, Pavlov S G and Richter H 2013 J. Infrared Milli. Terahz. Waves 34 325
|
[9] |
Kim S M, Hatami F, Harris J S, Kurian A W, Ford J, King D, Scalari G, Giovannini M, Hoyler N, Faist J and Harris G 2006 Appl. Phys. Lett. 88 153903
|
[10] |
Liu C W, Zhai S Q, Zhang J C, Zhou Y H, Jia Z W, Liu F Q and Wang Z G 2015 J. Semicond. 36 094009
|
[11] |
Danylov A A, Goyette T M, Waldman J, Coulombe M J, Gatesman A J, Giles R H, Qian X F, Chandrayan N, Vangala S, Termkoa K, Goodhue W D and Nixon W E 2010 Opt. Express 18 16264
|
[12] |
Rochat M, Ajili L, Willenberg H, Faist J, Beere H, Davies G, Linfield E and Ritchie D 2002 Appl. Phys. Lett. 81 1381
|
[13] |
Ulrich J, Zobl R, Finger N, Unterrainer K, Strasser G and Gornik E 1999 Physica B 272 216
|
[14] |
Krüger O, Kreutzmann S, Prasai D, Wienold M, Sharma R, Pittroff W, Weixelbaum L, John W, Biermann K, Schrottke L, Schnieder F, Erbert G, Grahn H T and Tränkle G 2013 IEEE Photon. Technol. Lett. 25 1570
|
[15] |
Gmachl C, Sergent A M, Tredicucci A, Capasso F, Hutchinson A L, Sivco D L, Baillargeon J N, Chu S N G and Cho A Y 1999 IEEE Photon. Technol. Lett. 11 1369
|
[16] |
Tsekoun A, Go R, Pushkarsky M, Razeghi M and Patel C K N 2006 Proc. Natl. Acad. Sci. 103 4831
|
[17] |
Blakemore J S 1982 J. Appl. Phys. 53 R123
|
[18] |
Kumar S, Williams B S, Kohen S, Hu Q and Reno J L 2004 Appl. Phys. Lett. 84 2494
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|