|
|
Intercept-resend attack on six-state quantum key distribution over collective-rotation noise channels |
Kevin Garapo1, Mhlambululi Mafu2, Francesco Petruccione1,3 |
1 Centre for Quantum Technology, School of Chemistry and Physics, University of KwaZulu-Natal, P/Bag X54001 Durban 4000, South Africa; 2 Department of Physics and Astronomy, Botswana International University of Science and Technology, P/Bag 16, Palapye, Botswana; 3 National Institute for Theoretical Physics (NITheP), KwaZulu-Natal, South Africa |
|
|
Abstract We investigate the effect of collective-rotation noise on the security of the six-state quantum key distribution. We study the case where the eavesdropper, Eve, performs an intercept-resend attack on the quantum communication between Alice, the sender, and Bob, the receiver. We first derive the collective-rotation noise model for the six-state protocol and then parameterize the mutual information between Alice and Eve. We then derive quantum bit error rate for three intercept-resend attack scenarios. We observe that the six-state protocol is robust against intercept-resend attacks on collective rotation noise channels when the rotation angle is kept within certain bounds.
|
Received: 12 November 2015
Revised: 03 March 2016
Accepted manuscript online:
|
PACS:
|
03.67.Dd
|
(Quantum cryptography and communication security)
|
|
Fund: Project supported by the South African Research Chair Initiative of the Department of Science and Technology and National Research Foundation. |
Corresponding Authors:
Kevin Garapo
E-mail: kevingarapo@gmail.com
|
Cite this article:
Kevin Garapo, Mhlambululi Mafu, Francesco Petruccione Intercept-resend attack on six-state quantum key distribution over collective-rotation noise channels 2016 Chin. Phys. B 25 070303
|
[1] |
Bennett C and Brassard G 1984 Quantum Cryptography: Public Key Distribution and Coin Tossing, Proceedings of IEEE International Conference on Computers, Systems and Signal Processing Vol. 175 (Bangalore, India)
|
[2] |
Gisin N, Ribordy G, Tittel W and Zbinden H 2002 Rev. Mod. Phys. 74 145
|
[3] |
Diffie W and Hellman M E 1976 IEEE Trans. Inform. Theory 22 644
|
[4] |
Rivest R L, Shamir A and Adleman L 1978 Commun. ACM 21 120
|
[5] |
Wootters W K and Zurek W H 1982 Nature 299 802
|
[6] |
Heisenberg W 1927 Zeitschrift für Physik 43 172
|
[7] |
Busch P, Heinonen T and Lahti P 2007 Phys. Rep. 452 155
|
[8] |
Nielsen M and Chuang I 2002 Quantum Computation and Quantum Information
|
[9] |
Ekert A 1991 Phys. Rev. Lett. 67 661
|
[10] |
Bennett C H 1992 Phys. Rev. Lett. 68 3121
|
[11] |
Scarani V, Acín A, Ribordy G and Gisin N 2004 Phys. Rev. Lett. 92 057901
|
[12] |
Lo H K, Ma X and Chen K 2005 Phys. Rev. Lett. 94 230504
|
[13] |
Mayers D 1996 Quantum Key Distribution and String Oblivious Transfer in Noisy Channels, Advances in Cryptology-CRYPTO'96 (Springer) pp. 343-357
|
[14] |
Devetak I and Winter A 2005 Distillation of Secret Key and Entanglement from Quantum States, Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences Vol. 461 (The Royal Society) pp. 207-235
|
[15] |
Kraus B, Gisin N and Renner R 2005 Phys. Rev. Lett. 95 80501
|
[16] |
Renner R, Gisin N and Kraus B 2005 Phys. Rev. A 72 12332
|
[17] |
Shor P W and Preskill J 2000 Phys. Rev. Lett. 85 441
|
[18] |
Lo H K 2001 Quantum Inf. Comput. 1 81
|
[19] |
Tamaki K, Koashi M and Imoto N 2003 Phys. Rev. Lett. 90 167904
|
[20] |
Scarani V, Bechmann-Pasquinucci H, Cerf N, Dušek M, Lütkenhaus N and Peev M 2009 Rev. Mod. Phys. 81 1301
|
[21] |
Hughes R J, Morgan G L and Peterson C G 2000 J. Mod. Opt. 47 533
|
[22] |
Peev M, Pacher C, Alléaume R, Barreiro C, Bouda J, Boxleitner W, Debuisschert T, Diamanti E, Dianati M, Dynes J, et al. 2009 New J. Phys. 11 075001
|
[23] |
Mirza A and Petruccione F 2010 JOSA B 27 A185
|
[24] |
Namekata N, Takesue H, Honjo T, Tokura Y and Inoue S 2011 Opt. Express 19 10632
|
[25] |
Sasaki M, Fujiwara M, Ishizuka H, Klaus W, Wakui K, Takeoka M, Miki S, Yamashita T, Wang Z, Tanaka A, et al. 2011 Opt. Express 19 10387
|
[26] |
Stucki D, Legré M, Buntschu F, Clausen B, Felber N, Gisin N, Henzen L, Junod P, Litzistorf G, Monbaron P, et al. 2011 New J. Phys. 13 123001
|
[27] |
Zhao Y, Qi B, Ma X, Lo H K and Qian L 2006 Phys. Rev. Lett. 96 070502
|
[28] |
Ma X, Qi B, Zhao Y and Lo H K 2005 Phys. Rev. A 72 012326
|
[29] |
http://www.idquantique.com
|
[30] |
http://www.magiqtech.com
|
[31] |
Xiu X M, Dong L, Gao Y J and Chi F 2009 Opt. Commun. 282 4171
|
[32] |
Tamaki K, Koashi M and Imoto N 2003 Phys. Rev. A 67 032310
|
[33] |
Tamaki K and Lütkenhaus N 2004 Phys. Rev. A 69 032316
|
[34] |
Mertz M, Kampermann H, Shadman Z and Bruß D 2013 Phys. Rev. A 87 042312
|
[35] |
Wang X B 2005 Phys. Rev. A 72 050304
|
[36] |
Li X H, Deng F G and Zhou H Y 2008 Phys. Rev. A 78 022321
|
[37] |
Gu B, Pei S, Song B and Zhong K 2009 Science in China Series G: Physics, Mechanics and Astronomy 52 1913
|
[38] |
Dong L, Xiu X M, Gao Y J and Chi F 2009 Opt. Commun. 282 1688
|
[39] |
Yang C W and Hwang T 2012 Int. J. Theor. Phys. 51 3941
|
[40] |
Bruß D 1998 Phys. Rev. Lett. 81 3018
|
[41] |
Phoenix S J, Barnett S M and Chefles A 2000 J. Mod. Opt. 47 507
|
[42] |
Boileau J, Tamaki K, Batuwantudawe J, Laflamme R and Renes J 2005 Phys. Rev. Lett. 94 40503
|
[43] |
Mafu M, Garapo K and Petruccione F 2014 Phys. Rev. A 90 032308
|
[44] |
Senekane M, Mafu M and Petruccione F 2015 J. Quantum Inf. Sci. 5 33
|
[45] |
Bruß D and Macchiavello C 2002 Phys. Rev. Lett. 88 127901
|
[46] |
Bechmann-Pasquinucci H and Gisin N 1999 Phys. Rev. A 59 4238
|
[47] |
Bourennane M, Karlsson A and Björk G 2001 Phys. Rev. A 64 012306
|
[48] |
Gottesman D and Lo H K 2003 IEEE Trans. Inf. Theory 49 457
|
[49] |
Renner R 2008 Inte. J. Quantum Inf. 6 1
|
[50] |
Cai R and Scarani V 2009 New J. Phys. 11 045024
|
[51] |
Scarani V and Renner R 2008 Phys. Rev. Lett. 100 200501
|
[52] |
Shadman Z, Kampermann H, Meyer T and Bruss D 2009 Int. J. Quantum Inf. 07 297
|
[53] |
Żukowski M, Zeilinger A, Horne M A and Ekert A K 1993 Phys. Rev. Lett. 71 4287
|
[54] |
Li J, Chen Y H, Pan Z S, Sun F Q, Li N and Li L L 2016 Acta Phys. Sin. 65 30302 (in Chinese)
|
[55] |
Li J, Pan Z, Zheng J, Sun F, Ye X and Yuan K 2015 Chin. J. Electron. 24 689
|
[56] |
Curty M and Lütkenhaus N 2005 Phys. Rev. A 71 062301
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|