Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(7): 070303    DOI: 10.1088/1674-1056/25/7/070303
GENERAL Prev   Next  

Intercept-resend attack on six-state quantum key distribution over collective-rotation noise channels

Kevin Garapo1, Mhlambululi Mafu2, Francesco Petruccione1,3
1 Centre for Quantum Technology, School of Chemistry and Physics, University of KwaZulu-Natal, P/Bag X54001 Durban 4000, South Africa;
2 Department of Physics and Astronomy, Botswana International University of Science and Technology, P/Bag 16, Palapye, Botswana;
3 National Institute for Theoretical Physics (NITheP), KwaZulu-Natal, South Africa
Abstract  We investigate the effect of collective-rotation noise on the security of the six-state quantum key distribution. We study the case where the eavesdropper, Eve, performs an intercept-resend attack on the quantum communication between Alice, the sender, and Bob, the receiver. We first derive the collective-rotation noise model for the six-state protocol and then parameterize the mutual information between Alice and Eve. We then derive quantum bit error rate for three intercept-resend attack scenarios. We observe that the six-state protocol is robust against intercept-resend attacks on collective rotation noise channels when the rotation angle is kept within certain bounds.
Keywords:  six states      quantum key distribution      security      collective-rotation noise  
Received:  12 November 2015      Revised:  03 March 2016      Accepted manuscript online: 
PACS:  03.67.Dd (Quantum cryptography and communication security)  
Fund: Project supported by the South African Research Chair Initiative of the Department of Science and Technology and National Research Foundation.
Corresponding Authors:  Kevin Garapo     E-mail:  kevingarapo@gmail.com

Cite this article: 

Kevin Garapo, Mhlambululi Mafu, Francesco Petruccione Intercept-resend attack on six-state quantum key distribution over collective-rotation noise channels 2016 Chin. Phys. B 25 070303

[1] Bennett C and Brassard G 1984 Quantum Cryptography: Public Key Distribution and Coin Tossing, Proceedings of IEEE International Conference on Computers, Systems and Signal Processing Vol. 175 (Bangalore, India)
[2] Gisin N, Ribordy G, Tittel W and Zbinden H 2002 Rev. Mod. Phys. 74 145
[3] Diffie W and Hellman M E 1976 IEEE Trans. Inform. Theory 22 644
[4] Rivest R L, Shamir A and Adleman L 1978 Commun. ACM 21 120
[5] Wootters W K and Zurek W H 1982 Nature 299 802
[6] Heisenberg W 1927 Zeitschrift für Physik 43 172
[7] Busch P, Heinonen T and Lahti P 2007 Phys. Rep. 452 155
[8] Nielsen M and Chuang I 2002 Quantum Computation and Quantum Information
[9] Ekert A 1991 Phys. Rev. Lett. 67 661
[10] Bennett C H 1992 Phys. Rev. Lett. 68 3121
[11] Scarani V, Acín A, Ribordy G and Gisin N 2004 Phys. Rev. Lett. 92 057901
[12] Lo H K, Ma X and Chen K 2005 Phys. Rev. Lett. 94 230504
[13] Mayers D 1996 Quantum Key Distribution and String Oblivious Transfer in Noisy Channels, Advances in Cryptology-CRYPTO'96 (Springer) pp. 343-357
[14] Devetak I and Winter A 2005 Distillation of Secret Key and Entanglement from Quantum States, Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences Vol. 461 (The Royal Society) pp. 207-235
[15] Kraus B, Gisin N and Renner R 2005 Phys. Rev. Lett. 95 80501
[16] Renner R, Gisin N and Kraus B 2005 Phys. Rev. A 72 12332
[17] Shor P W and Preskill J 2000 Phys. Rev. Lett. 85 441
[18] Lo H K 2001 Quantum Inf. Comput. 1 81
[19] Tamaki K, Koashi M and Imoto N 2003 Phys. Rev. Lett. 90 167904
[20] Scarani V, Bechmann-Pasquinucci H, Cerf N, Dušek M, Lütkenhaus N and Peev M 2009 Rev. Mod. Phys. 81 1301
[21] Hughes R J, Morgan G L and Peterson C G 2000 J. Mod. Opt. 47 533
[22] Peev M, Pacher C, Alléaume R, Barreiro C, Bouda J, Boxleitner W, Debuisschert T, Diamanti E, Dianati M, Dynes J, et al. 2009 New J. Phys. 11 075001
[23] Mirza A and Petruccione F 2010 JOSA B 27 A185
[24] Namekata N, Takesue H, Honjo T, Tokura Y and Inoue S 2011 Opt. Express 19 10632
[25] Sasaki M, Fujiwara M, Ishizuka H, Klaus W, Wakui K, Takeoka M, Miki S, Yamashita T, Wang Z, Tanaka A, et al. 2011 Opt. Express 19 10387
[26] Stucki D, Legré M, Buntschu F, Clausen B, Felber N, Gisin N, Henzen L, Junod P, Litzistorf G, Monbaron P, et al. 2011 New J. Phys. 13 123001
[27] Zhao Y, Qi B, Ma X, Lo H K and Qian L 2006 Phys. Rev. Lett. 96 070502
[28] Ma X, Qi B, Zhao Y and Lo H K 2005 Phys. Rev. A 72 012326
[29] http://www.idquantique.com
[30] http://www.magiqtech.com
[31] Xiu X M, Dong L, Gao Y J and Chi F 2009 Opt. Commun. 282 4171
[32] Tamaki K, Koashi M and Imoto N 2003 Phys. Rev. A 67 032310
[33] Tamaki K and Lütkenhaus N 2004 Phys. Rev. A 69 032316
[34] Mertz M, Kampermann H, Shadman Z and Bruß D 2013 Phys. Rev. A 87 042312
[35] Wang X B 2005 Phys. Rev. A 72 050304
[36] Li X H, Deng F G and Zhou H Y 2008 Phys. Rev. A 78 022321
[37] Gu B, Pei S, Song B and Zhong K 2009 Science in China Series G: Physics, Mechanics and Astronomy 52 1913
[38] Dong L, Xiu X M, Gao Y J and Chi F 2009 Opt. Commun. 282 1688
[39] Yang C W and Hwang T 2012 Int. J. Theor. Phys. 51 3941
[40] Bruß D 1998 Phys. Rev. Lett. 81 3018
[41] Phoenix S J, Barnett S M and Chefles A 2000 J. Mod. Opt. 47 507
[42] Boileau J, Tamaki K, Batuwantudawe J, Laflamme R and Renes J 2005 Phys. Rev. Lett. 94 40503
[43] Mafu M, Garapo K and Petruccione F 2014 Phys. Rev. A 90 032308
[44] Senekane M, Mafu M and Petruccione F 2015 J. Quantum Inf. Sci. 5 33
[45] Bruß D and Macchiavello C 2002 Phys. Rev. Lett. 88 127901
[46] Bechmann-Pasquinucci H and Gisin N 1999 Phys. Rev. A 59 4238
[47] Bourennane M, Karlsson A and Björk G 2001 Phys. Rev. A 64 012306
[48] Gottesman D and Lo H K 2003 IEEE Trans. Inf. Theory 49 457
[49] Renner R 2008 Inte. J. Quantum Inf. 6 1
[50] Cai R and Scarani V 2009 New J. Phys. 11 045024
[51] Scarani V and Renner R 2008 Phys. Rev. Lett. 100 200501
[52] Shadman Z, Kampermann H, Meyer T and Bruss D 2009 Int. J. Quantum Inf. 07 297
[53] Żukowski M, Zeilinger A, Horne M A and Ekert A K 1993 Phys. Rev. Lett. 71 4287
[54] Li J, Chen Y H, Pan Z S, Sun F Q, Li N and Li L L 2016 Acta Phys. Sin. 65 30302 (in Chinese)
[55] Li J, Pan Z, Zheng J, Sun F, Ye X and Yuan K 2015 Chin. J. Electron. 24 689
[56] Curty M and Lütkenhaus N 2005 Phys. Rev. A 71 062301
[1] Security of the traditional quantum key distribution protocolswith finite-key lengths
Bao Feng(冯宝), Hai-Dong Huang(黄海东), Yu-Xiang Bian(卞宇翔), Wei Jia(贾玮), Xing-Yu Zhou(周星宇), and Qin Wang(王琴). Chin. Phys. B, 2023, 32(3): 030307.
[2] Performance of phase-matching quantum key distribution based on wavelength division multiplexing technology
Haiqiang Ma(马海强), Yanxin Han(韩雁鑫), Tianqi Dou(窦天琦), and Pengyun Li(李鹏云). Chin. Phys. B, 2023, 32(2): 020304.
[3] Temperature characterizations of silica asymmetric Mach-Zehnder interferometer chip for quantum key distribution
Dan Wu(吴丹), Xiao Li(李骁), Liang-Liang Wang(王亮亮), Jia-Shun Zhang(张家顺), Wei Chen(陈巍), Yue Wang(王玥), Hong-Jie Wang(王红杰), Jian-Guang Li(李建光), Xiao-Jie Yin(尹小杰), Yuan-Da Wu(吴远大), Jun-Ming An(安俊明), and Ze-Guo Song(宋泽国). Chin. Phys. B, 2023, 32(1): 010305.
[4] Improvement of a continuous-variable measurement-device-independent quantum key distribution system via quantum scissors
Lingzhi Kong(孔令志), Weiqi Liu(刘维琪), Fan Jing(荆凡), Zhe-Kun Zhang(张哲坤), Jin Qi(齐锦), and Chen He(贺晨). Chin. Phys. B, 2022, 31(9): 090304.
[5] Practical security analysis of continuous-variable quantum key distribution with an unbalanced heterodyne detector
Lingzhi Kong(孔令志), Weiqi Liu(刘维琪), Fan Jing(荆凡), and Chen He(贺晨). Chin. Phys. B, 2022, 31(7): 070303.
[6] Quantum key distribution transmitter chip based on hybrid-integration of silica and lithium niobates
Xiao Li(李骁), Liang-Liang Wang(王亮亮), Jia-shun Zhang(张家顺), Wei Chen(陈巍), Yue Wang(王玥), Dan Wu (吴丹), and Jun-Ming An (安俊明). Chin. Phys. B, 2022, 31(6): 064212.
[7] Short-wave infrared continuous-variable quantum key distribution over satellite-to-submarine channels
Qingquan Peng(彭清泉), Qin Liao(廖骎), Hai Zhong(钟海), Junkai Hu(胡峻凯), and Ying Guo(郭迎). Chin. Phys. B, 2022, 31(6): 060306.
[8] Phase-matching quantum key distribution with light source monitoring
Wen-Ting Li(李文婷), Le Wang(王乐), Wei Li(李威), and Sheng-Mei Zhao(赵生妹). Chin. Phys. B, 2022, 31(5): 050310.
[9] Parameter estimation of continuous variable quantum key distribution system via artificial neural networks
Hao Luo(罗浩), Yi-Jun Wang(王一军), Wei Ye(叶炜), Hai Zhong(钟海), Yi-Yu Mao(毛宜钰), and Ying Guo(郭迎). Chin. Phys. B, 2022, 31(2): 020306.
[10] Detecting the possibility of a type of photon number splitting attack in decoy-state quantum key distribution
Xiao-Ming Chen(陈小明), Lei Chen(陈雷), and Ya-Long Yan(阎亚龙). Chin. Phys. B, 2022, 31(12): 120304.
[11] Experimental study on age and gender differences in microscopic movement characteristics of students
Jiayue Wang(王嘉悦), Maik Boltes, Armin Seyfried, Antoine Tordeux, Jun Zhang(张俊), and Wenguo Weng(翁文国). Chin. Phys. B, 2021, 30(9): 098902.
[12] Realization of simultaneous balanced multi-outputs for multi-protocols QKD decoding based onsilica-based planar lightwave circuit
Jin You(游金), Yue Wang(王玥), and Jun-Ming An(安俊明). Chin. Phys. B, 2021, 30(8): 080302.
[13] Universal quantum circuit evaluation on encrypted data using probabilistic quantum homomorphic encryption scheme
Jing-Wen Zhang(张静文), Xiu-Bo Chen(陈秀波), Gang Xu(徐刚), and Yi-Xian Yang(杨义先). Chin. Phys. B, 2021, 30(7): 070309.
[14] Continuous-variable quantum key distribution based on photon addition operation
Xiao-Ting Chen(陈小婷), Lu-Ping Zhang(张露萍), Shou-Kang Chang(常守康), Huan Zhang(张欢), and Li-Yun Hu(胡利云). Chin. Phys. B, 2021, 30(6): 060304.
[15] Practical decoy-state BB84 quantum key distribution with quantum memory
Xian-Ke Li(李咸柯), Xiao-Qian Song(宋小谦), Qi-Wei Guo(郭其伟), Xing-Yu Zhou(周星宇), and Qin Wang(王琴). Chin. Phys. B, 2021, 30(6): 060305.
No Suggested Reading articles found!