Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(6): 066103    DOI: 10.1088/1674-1056/25/6/066103
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Phenomenological description of semi-soft nematic elastomers

Wen-Wen Diao(刁文文)1,2, Qing-Tian Meng(孟庆田)1, Fang-Fu Ye(叶方富)2
1 College of Physics and Electronics, Shandong Normal University, Jinan 250014, China;
2 Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
Abstract  

Nematic elastomers are new materials that have many remarkable properties. In this article, we study how nonlinear elasticity of semi-soft nematic elastomers can be described phenomenologically. We start with a theory based on strain tensor only, and then continue to develop a phenomenological description with the liquid crystal order tensor included explicitly. Such a description has the virtue of being able to treat the strain tensor and the liquid crystal order tensor equally and thus making the complicated symmetries of nematic elastomers easier to understand.

Keywords:  nematic elastomers      symmetry      phenomenological theory      elasticity  
Received:  01 March 2016      Revised:  16 March 2016      Accepted manuscript online: 
PACS:  61.41.+e (Polymers, elastomers, and plastics)  
  61.30.Vx (Polymer liquid crystals)  
  61.30.Cz (Molecular and microscopic models and theories of liquid crystal structure)  
  61.50.Ah (Theory of crystal structure, crystal symmetry; calculations and modeling)  
Corresponding Authors:  Qing-Tian Meng, Fang-Fu Ye     E-mail:  qtmeng@sdnu.edu.cn;fye@iphy.ac.cn

Cite this article: 

Wen-Wen Diao(刁文文), Qing-Tian Meng(孟庆田), Fang-Fu Ye(叶方富) Phenomenological description of semi-soft nematic elastomers 2016 Chin. Phys. B 25 066103

[1] Warner M and Terentjev E M 2003 Liquid crystal elastomers-International series of monographs on physics, Vol. xiv (Oxford: Oxford University Press), p. 407
[2] Li M H, Keller P, Yang J Y and Albouy P A 2004 Adv. Mater. 16 1922
[3] Urayama K, Kondo H, Arai Y O and Takigawa T 2005 Phys. Rev. E 71
[4] Finkelmann H, Kim S T, Munoz A, Palffy-Muhoray P and Taheri B 2001 Adv. Mater. 13 1069
[5] Ikeda T and Tsutsumi O 1995 Science 268 1873
[6] Olmsted P D 1994 J. De Physique Ii 4 2215
[7] Terentjev E M, Warner M and Bladon P 1994 J. De Physique Ii 4 667
[8] Golubovic L and Lubensky T C 1989 Phys. Rev. Lett. 63 1082
[9] Kupfer J and Finkelmann H 1994 Macromol. Chem. Phys. 195 1353
[10] Verwey G C and Warner M 1995 Macromolecules 28 4303
[11] de Gennes P G 1982 in Polymer Liquid Crystals, eds. Ciferri A, Krigbaum W and Helfrich W (Berline: Springer), p. 231
[12] Lubensky T C, Mukhopadhyay R, Radzihovsky L and Xing X J 2002 Phys. Rev. E 66 031704
[13] Landau L D, Lifshitz, Kosevich A D M and Pitaevskiï L P 1986 Theory of elasticity, 3rd edn., Course of theoretical physics, Vol. viii (New York: Pergamon Press, Oxford Oxfordshire), p. 187
[14] Horn R A and Johnson C R 1991 Topics in Matrix Analysis (Cambridge: Cambridge University Press)
[15] Ye F F, Mukhopadhyay R, Stenull O and Lubensky T C 2007 Phys. Rev. Lett. 98 147801
[16] Ye F F and Lubensky T C 2009 J. Phys. Chem. B 113 3853
[17] Lubensky T C and Ye F F 2010 Phys. Rev. E 82 011704
[18] Mbanga B L, Ye F F, Selinger J V and Selinger R L B 2010 Phys. Rev. E 82 051701
[19] Sawa Y, Ye F F, Urayama K, Takigawa T, Gimenez-Pinto V, Selinger R L B and Selinger J V 2010 Proc. Natl. Acad. Sci. USA 108 6364
[1] Conformable fractional heat equation with fractional translation symmetry in both time and space
W S Chung, A Gungor, J Kříž, B C Lütfüoǧlu, and H Hassanabadi. Chin. Phys. B, 2023, 32(4): 040202.
[2] An optimized infinite time-evolving block decimation algorithm for lattice systems
Junjun Xu(许军军). Chin. Phys. B, 2023, 32(4): 040303.
[3] Lie symmetry analysis and invariant solutions for the (3+1)-dimensional Virasoro integrable model
Hengchun Hu(胡恒春) and Yaqi Li(李雅琦). Chin. Phys. B, 2023, 32(4): 040503.
[4] Demonstrate chiral spin currents with nontrivial interactions in superconducting quantum circuit
Xiang-Min Yu(喻祥敏), Xiang Deng(邓翔), Jian-Wen Xu(徐建文), Wen Zheng(郑文), Dong Lan(兰栋), Jie Zhao(赵杰), Xinsheng Tan(谭新生), Shao-Xiong Li(李邵雄), and Yang Yu(于扬). Chin. Phys. B, 2023, 32(4): 047104.
[5] Chiral symmetry protected topological nodal superconducting phase and Majorana Fermi arc
Mei-Ling Lu(卢美玲), Yao Wang(王瑶), He-Zhi Zhang(张鹤之), Hao-Lin Chen(陈昊林), Tian-Yuan Cui(崔天元), and Xi Luo(罗熙). Chin. Phys. B, 2023, 32(2): 027301.
[6] Site selective 5f electronic correlations in β-uranium
Ruizhi Qiu(邱睿智), Liuhua Xie(谢刘桦), and Li Huang(黄理). Chin. Phys. B, 2023, 32(1): 017101.
[7] Influence of coupling asymmetry on signal amplification in a three-node motif
Xiaoming Liang(梁晓明), Chao Fang(方超), Xiyun Zhang(张希昀), and Huaping Lü(吕华平). Chin. Phys. B, 2023, 32(1): 010504.
[8] Evolution of polarization singularities accompanied by avoided crossing in plasmonic system
Yi-Xiao Peng(彭一啸), Qian-Ju Song(宋前举), Peng Hu(胡鹏), Da-Jian Cui(崔大健), Hong Xiang(向红), and De-Zhuan Han(韩德专). Chin. Phys. B, 2023, 32(1): 014201.
[9] Recent advances of defect-induced spin and valley polarized states in graphene
Yu Zhang(张钰), Liangguang Jia(贾亮广), Yaoyao Chen(陈瑶瑶), Lin He(何林), and Yeliang Wang(王业亮). Chin. Phys. B, 2022, 31(8): 087301.
[10] Conservation of the particle-hole symmetry in the pseudogap state in optimally-doped Bi2Sr2CuO6+δ superconductor
Hongtao Yan(闫宏涛), Qiang Gao(高强), Chunyao Song(宋春尧), Chaohui Yin(殷超辉), Yiwen Chen(陈逸雯), Fengfeng Zhang(张丰丰), Feng Yang(杨峰), Shenjin Zhang(张申金), Qinjun Peng(彭钦军), Guodong Liu(刘国东), Lin Zhao(赵林), Zuyan Xu(许祖彦), and X. J. Zhou(周兴江). Chin. Phys. B, 2022, 31(8): 087401.
[11] Local sum uncertainty relations for angular momentum operators of bipartite permutation symmetric systems
I Reena, H S Karthik, J Prabhu Tej, Sudha, A R Usha Devi, and A K Rajagopal. Chin. Phys. B, 2022, 31(6): 060301.
[12] Dynamical quantum phase transition in XY chains with the Dzyaloshinskii-Moriya and XZY-YZX three-site interactions
Kaiyuan Cao(曹凯源), Ming Zhong(钟鸣), and Peiqing Tong(童培庆). Chin. Phys. B, 2022, 31(6): 060505.
[13] Parity-time symmetric acoustic system constructed by piezoelectric composite plates with active external circuits
Yang Zhou(周扬), Zhang-Zhao Yang(杨彰昭), Yao-Yin Peng(彭尧吟), and Xin-Ye Zou(邹欣晔). Chin. Phys. B, 2022, 31(6): 064304.
[14] A nonlocal Boussinesq equation: Multiple-soliton solutions and symmetry analysis
Xi-zhong Liu(刘希忠) and Jun Yu(俞军). Chin. Phys. B, 2022, 31(5): 050201.
[15] High-energy x-ray diffraction study on phase transition asymmetry of plastic crystal neopentylglycol
Zhe Zhang(张哲), Yan-Na Chen(陈艳娜), Ji Qi(齐迹), Zhao Zhang(张召), Koji Ohara, Osami Sakata, Zhi-Dong Zhang(张志东), and Bing Li(李昺). Chin. Phys. B, 2022, 31(3): 036802.
No Suggested Reading articles found!