ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS |
Prev
Next
|
|
|
Dynamics of a three-level V-type atom driven by a cavity photon and microwave field |
Yan-Li Xue(薛艳丽), Shi-Deng Zhu(朱诗灯), Ju Liu(刘菊), Ting-Hui Xiao(肖廷辉), Bao-Hua Feng(冯宝华), Zhi-Yuan Li(李志远) |
Laboratory of Optical Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China |
|
|
Abstract We discuss the dynamics of a three-level V-type atom driven simultaneously by a cavity photon and microwave field by examining the atomic population evolution. Owing to the coupling effect of the cavity photon, periodical oscillation of the population between the two upper states and the ground state takes place, which is the well-known vacuum Rabi oscillation. Meanwhile, the population exchange between the upmost level and the middle level can occur due to the driving action of the external microwave field. The general dynamic behavior is the superposition of a fast and a slow periodical oscillation under the cooperative and competitive effect of the cavity photon and the microwave field. Numerical results demonstrate that the time evolution of the population is strongly dependent on the atom-cavity coupling coefficient g and Rabi frequency Ωe that reflects the intensity of the external microwave field. By modulating the two parameters g and Ωe, a large number of population transfer behaviors can be achieved.
|
Received: 14 October 2015
Revised: 24 November 2015
Accepted manuscript online:
|
PACS:
|
42.50.Pq
|
(Cavity quantum electrodynamics; micromasers)
|
|
32.80.Qk
|
(Coherent control of atomic interactions with photons)
|
|
42.50.G
|
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11434017 and 11374357) and the National Basics Research Program of China (Grant No. 2013CB632704). |
Corresponding Authors:
Zhi-Yuan Li
E-mail: lizy@aphy.iphy.ac.cn
|
Cite this article:
Yan-Li Xue(薛艳丽), Shi-Deng Zhu(朱诗灯), Ju Liu(刘菊), Ting-Hui Xiao(肖廷辉), Bao-Hua Feng(冯宝华), Zhi-Yuan Li(李志远) Dynamics of a three-level V-type atom driven by a cavity photon and microwave field 2016 Chin. Phys. B 25 044203
|
[1] |
Purcell E M 1946 Phys. Rev. 69 681
|
[2] |
Bloembergen N, Purcell E M and Pound R V 1948 Phys. Rev. 73 679
|
[3] |
Li Z Y and Xia Y 2001 Phys. Rev. A 63 043817
|
[4] |
Zhu S Y, Chen H and Huang H 1997 Phys. Rev. Lett. 79 205
|
[5] |
Zhang J P, Hernandez G and Zhu Y F 2009 J. Mod. Opt. 56 1955
|
[6] |
Jiang X Q, Wang Y L and Sun X D 2010 Eur. Phys. J. D 57 427
|
[7] |
Zeng X D, Yu M Z, Wang D W, Xu J P and Yang Y P 2011 J. Opt. Soc. Am. B 28 2253
|
[8] |
Xue Y L, Zhu S D, Li J F, Ding W, Feng B H and Li Z Y 2015 Chin. Phys. B 24 034202
|
[9] |
Qiu L, Zhang K and Li Z Y 2013 Chin. Phys. B 22 094207
|
[10] |
Mucke M, Figueroa E, Bochmann J, Hahn C, Murr K, Ritter S, Villas-Boas C J and Rempe G 2010 Nat. Lett. 465 755
|
[11] |
Sun Y F, Tan L and Xu Y 2013 Chin. Phys. B 22 030309
|
[12] |
Wei X G, Wang Y H, Zhang J P and Zhu Y F 2011 Phys. Rev. A 84 045806
|
[13] |
Yi Z, Li G X and Yang Y P 2013 Phys. Rev. A 87 053408
|
[14] |
Netz R, Feurer T, Roberts G and Sauerbrey R 2002 Phys. Rev. A 65 043406
|
[15] |
Li G X, Peng J S, Wu S P and Huang G M 2001 Chin. Phys. Lett. 18 48
|
[16] |
Bochmann J, Mücke M, Langfahl-Klabes G, Erbel C, Weber B, Specht H P, Moehring D L and Rempe G 2008 Phys. Rev. Lett. 101 223601
|
[17] |
Zhang K and Li Z Y 2010 Phys. Rev. A 81 033843
|
[18] |
Guo Y Q, Deng Y, Pei P, Tong D M and Wang D F 2015 Chin. Phys. Lett. 32 60303
|
[19] |
Yang W G, Joshi A and Xiao M 2004 Phys. Rev. A 70 033807
|
[20] |
Zhang Z M, Chi S and Cheng B C 2002 J. Opt. B: Quantum Semiclass. Opt. 4 30
|
[21] |
Faghihi M J and Tavassoly M K 2012 J. Phys. B: At. Mol. Opt. Phys. 45 035502
|
[22] |
Zhou Q C, Zhu S N 2005 Opt. Commun. 248 437
|
[23] |
Didier N, Blanter Y M and Hekking F W J 2010 Phys. Rev. B 82 214507
|
[24] |
Lu M, Xia Y, Shen L T, Song J and An N B 2014 Phys. Rev. A 89 012326
|
[25] |
Scala M, Militello B, Messina A, Maniscalco S, Piilo J and Suominen K A 2008 Phys. Rev. A 77 043827
|
[26] |
Tang S Q, Yuan J B, Wang X W and Kuang L M 2015 Chin. Phys. Lett. 32 40303
|
[27] |
Wen R J, Du J J, Li W F, Li Gang and Zhang T C 2014 Acta Phys. Sin. 63 244203 (in Chinese)
|
[28] |
Li G X, Peng J S and Huang G M 2000 J. Phys. B: At. Mol. Opt. Phys. 33 3743
|
[29] |
Djotyan G P, Bakos J S, Demeter G and Sörlei Z 2000 J. Opt. Soc. Am. B 17 107
|
[30] |
Cho S U, Moon H S, Chough Y T, Bae M H and Kim N 2014 Phys. Rev. A 89 053814
|
[31] |
Mortezapour A, Abedi M, Mahmoudi M and Khajehpour M R H 2011 J. Phys. B: At. Mol. Opt. Phys. 44 085501
|
[32] |
Ray A 2004 Phys. Rev. A 69 033806
|
[33] |
Gantsoga T, Meyera G M, Scully M O and Walther H 1996 Opt. Commun. 124 579
|
[34] |
Huang Y S, Wang N Y, Tang X Z 2015 Chin. Phys. B 24 034201
|
[35] |
Lin C C, Chen S Y, Cheng S Y and Lee H Y 2004 Appl. Phys. Lett. 84 5040
|
[36] |
Berman P R 1994 Cavity Quantum Electrodynamics (Boston: Academic Press)
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|